基于矩阵分解的协同过滤推荐

基于矩阵分解的协同过滤推荐

Traditional SVD

通常SVD矩阵分解指的是SVD奇异值分解,我们姑且将其命名为Traditional SVD(传统并经典着)其公式如下:
M m × n = U m × k Σ k × k V k × n T M_{m \times n} = U_{m \times k} \Sigma_{k \times k} V^T_{k \times n} Mm×n=Um×kΣk×kVk×nT

Traditional SVD分解的形式为3个矩阵相乘,中间矩阵为奇异值矩阵。如果想运用SVD分解的话,有一个前提是要求矩阵是稠密的,即矩阵里的元素要非空,否则就不能运用SVD分解

很显然我们的数据其实绝大多数情况下都是稀疏的,因此如果要使用Traditional SVD,一般的做法是先用均值或者其他统计学方法来填充矩阵,然后再运用Traditional SVD分解降维,但这样做明显对数据的原始性造成一定影响

FunkSVD(LFM)

刚才提到的Traditional SVD首先需要填充矩阵,然后再进行分解降维,同时存在计算复杂度高的问题,因为要分解成3个矩阵,所以后来提出了Funk SVD的方法,它不在将矩阵分解为3个矩阵,而是分解为2个用户-隐含特征,项目-隐含特征的矩阵,Funk SVD也被称为最原始的LFM模型,其公式如下:
R m × n = P m × k Q k × n R_{m \times n} = P_{m \times k} Q_{k \times n} Rm×n=Pm×kQk×n

原理解析

LFM(latent factor model)隐语义模型核心思想是通过隐含特征联系用户和物品,如下图:
在这里插入图片描述

  • P矩阵是User-LF矩阵,即用户和隐含特征的矩阵
  • Q矩阵是LF-Item矩阵,即隐含特征和物品的矩阵
  • R矩阵是User-Item矩阵,由P*Q得来
  • 能处理稀疏评分矩阵

利用矩阵分解技术,将原始User-Item的评分矩阵(稠密/稀疏)分解为P和Q矩阵,然后利用 P ∗ Q P*Q PQ还原出User-Item评分矩阵 R R R。整个过程相当于降维处理,其中:

  • 矩阵值 P 11 P_{11} P11表示用户1对隐含特征1的权重值
  • 矩阵值 Q 11 Q_{11} Q11表示隐含特征1在物品1上的权重值
  • 矩阵值 R 11 R_{11} R11就表示预测的用户1对物品1的评分, R 11 = P 1 , k ⃗ ⋅ Q k , 1 ⃗ R_{11}=\vec{P_{1,k}}\cdot \vec{Q_{k,1}} R11=P1,k Qk,1

在这里插入图片描述利用LFM预测用户对物品的评分, k k k表示隐含特征数量: r ^ u i = p u k ⃗ ⋅ q i k ⃗ = ∑ k = 1 k p u k q i k \begin{split} \hat {r}_{ui} &=\vec {p_{uk}}\cdot \vec {q_{ik}} \\&={\sum_{k=1}}^k p_{uk}q_{ik} \end{split} r^ui=puk qik =k=1kpukqik

因此最终,我们的目标也就是要求出P矩阵和Q矩阵及其当中的每一个值,然后再对用户-物品的评分进行预测

损失函数

同样对于评分预测我们利用平方差来构建损失函数:
C o s t = ∑ u , i ∈ R ( r u i − r ^ u i ) 2 = ∑ u , i ∈ R ( r u i − ∑ k = 1 k p u k q i k ) 2 \begin{split} Cost &= \sum_{u,i\in R} (r_{ui}-\hat{r}_{ui})^2 \\&=\sum_{u,i\in R} (r_{ui}-{\sum_{k=1}}^k p_{uk}q_{ik})^2 \end{split} Cost=u,iR(ruir^ui)2=u,iR(ruik=1kpukqik)2
加入L2正则化:
C o s t = ∑ u , i ∈ R ( r u i − ∑ k = 1 k p u k q i k ) 2 + λ ( ∑ U p u k 2 + ∑ I q i k 2 ) Cost = \sum_{u,i\in R} (r_{ui}-{\sum_{k=1}}^k p_{uk}q_{ik})^2 + \lambda(\sum_U{p_{uk}}^2+\sum_I{q_{ik}}^2) Cost=u,iR(ruik=1kpukqik)2+λ(Upuk2+Iqik2)
对损失函数求偏导:
∂ ∂ p u k C o s t = ∂ ∂ p u k [ ∑ u , i ∈ R ( r u i − ∑ k = 1 k p u k q i k ) 2 + λ ( ∑ U p u k 2 + ∑ I q i k 2 ) ] = 2 ∑ u , i ∈ R ( r u i − ∑ k = 1 k p u k q i k ) ( − q i k ) + 2 λ p u k ∂ ∂ q i k C o s t = ∂ ∂ q i k [ ∑ u , i ∈ R ( r u i − ∑ k = 1 k p u k q i k ) 2 + λ ( ∑ U p u k 2 + ∑ I q i k 2 ) ] = 2 ∑ u , i ∈ R ( r u i − ∑ k = 1 k p u k q i k ) ( − p u k ) + 2 λ q i k \begin{split} \cfrac {\partial}{\partial p_{uk}}Cost &= \cfrac {\partial}{\partial p_{uk}}[\sum_{u,i\in R} (r_{ui}-{\sum_{k=1}}^k p_{uk}q_{ik})^2 + \lambda(\sum_U{p_{uk}}^2+\sum_I{q_{ik}}^2)] \\&=2\sum_{u,i\in R} (r_{ui}-{\sum_{k=1}}^k p_{uk}q_{ik})(-q_{ik}) + 2\lambda p_{uk} \\\\ \cfrac {\partial}{\partial q_{ik}}Cost &= \cfrac {\partial}{\partial q_{ik}}[\sum_{u,i\in R} (r_{ui}-{\sum_{k=1}}^k p_{uk}q_{ik})^2 + \lambda(\sum_U{p_{uk}}^2+\sum_I{q_{ik}}^2)] \\&=2\sum_{u,i\in R} (r_{ui}-{\sum_{k=1}}^k p_{uk}q_{ik})(-p_{uk}) + 2\lambda q_{ik} \end{split} pukCostqikCost=puk[u,iR(ruik=1kpukqik)2+λ(Upuk2+Iqik2)]=2u,iR(ruik=1kpukqik)(qik)+2λpuk=qik[u,iR(ruik=1kpukqik)2+λ(Upuk2+I

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值