【Stable Diffusion】ControlNet基本教程(四)

本文介绍了ControlNet的两个基本应用:控制人物动作和建筑/室内生成。通过安装openposeeditor插件,用户可以自定义人物姿势,AI绘图进入自主可控阶段。对于建筑/室内设计,利用mlsd预处理和特定大模型,能生成高质量的设计图像,提高设计师效率。
摘要由CSDN通过智能技术生成

本文概要

接上篇【Stable Diffusion】ControlNet基本教程(三),本篇再介绍两个ControlNet常见的基本用法:控制人物动作和建筑/室内生成。让人物摆出特定的动作,这是ControlNet最神级的操作!这意味着可以自定义姿势,这意味着AI绘图正式进入自主可控的世代!而建筑/室内设计生成则给做设计的小伙伴带来更多灵感,并且减少渲染等很多重复、繁琐的工作,帮助设计师更专注于设计本身。

3.5 控制人物动作

(1)openpose editor插件安装
①打开扩展(Extension)标签
②点击从网址安装(Install from URL)
③在扩展的 git 仓库网址(URL for extension’s git repository)处输入“https://github.com/fkunn1326/openpose-editor”
④点击安装(Install)
⑤重启 WebUI
在这里插入图片描述
(2) 人物骨架的创建
在openpose editor标签页下点击detect from选择你想要侦测骨架的图片,系统自动根据图片大小确定比例和人物骨架,点击add直接添加默认人物骨架,可以通过多次点击add来添加多个人物骨架。调整人物骨架,顶点表示的就是关节的位置,通过调节顶点的位置,修改人物整体的姿态,尽量保持骨架关节的比例大小不变,然后对关节进行调整,完成点击send to txt2img。
在这里插入图片描述
(3)绘制个性化人物
在openpose editor完成骨架创建后,点击send to txt2img发送,这个时候你在txt2img标签栏下的controlnet下拉式菜单中可以找到你刚刚创建的人物骨架
①点击enable启用controlnet
②Preprocessor保持none(重要),controlnet的model选择openpose
③输入图片提示词和相关参数生成人物图片
这样就能get到Lisa的同款姿势的人物图片了:
在这里插入图片描述
Stable Diffusion checkpoint:chilloutmix_NiPrunedFp32Fix
Promp:bbest quality, masterpiece,best quality,official art,extremely detailed CG unity 8k wallpaper, (photorealistic:1.4), colorful, (Kpop idol), (aegyo sal:1),((puffy eyes)), full body,
(cyberpunk girl), (augmented reality:1), (neon lights), 1girl, blonde grey long hair,thick lips, blue contact lenses, hand on another’s hip, silver cybernetic implants,long sleeves,black crop top, black leather jacket, purple metallic leggings, silver metallic boots,halo, earrings, pendant, wristband, armlet,
Negative prompt:paintings, sketches, (worst quality:2), (low quality:2), (normal quality:2), lowres, normal quality, ((monochrome)), ((grayscale)), skin spots, acnes, skin blemishes, age spot)
Steps:28
Sampler:DPM++ SDE Karras
CFG Scale:8
Seed:-1
Denoising strength:0.45
Hires steps:20
Upscaler:Latent(bicubic antialised))

3.6 建筑/室内生成

(1)上传需要处理的图像(Drop Image Here or Click to Upload)
在SketchUP或者其他任何建模软件中简单地拉一个体块,导出图像就可以了
在这里插入图片描述
(2)图像边缘处理
启用ControlNet,在“预处理(Preprocessor)”中选择“mlsd”,在“模型(Model)”中选择和预处理一致的“control_mlsd”
mlsd用于直线检测,适用于四四方方的场景,比如建筑物、城市规划、景观设计、室内设计等。
生成的预处理图就是很正直的线条:
在这里插入图片描述
(3)图像生成
在预处理图的基础上,选择大模型,大模型的选择还是可以多尝试,现在也出现了专门的用于建筑设计的大模型,可以在https://civitai.com/中筛选Checkpoint,在搜索框中输入“#architecture”,就可以出现很多专门用于建筑设计的大模型
在这里插入图片描述
输入描述词,也可以配合lora等参数,就可以生成建筑/室内图像了
图像示例:
在这里插入图片描述
Stable Diffusion checkpoint:Aiarch_7000
Promp:landscape architecture,masterplan,(forest),plaza,pavement road,(river),dvArchModern,hyperrealistic,super detailed,delicate,intricate,high dynamic,high dynamic range
Negative prompt:signature,soft,blurry,drawing,sketch,poor quality,ugly,text,type,word,logo,pixelated,low resolution,saturated,high contrast,oversharpened)
在这里插入图片描述
Stable Diffusion checkpoint:chilloutmix_NiPrunedFp32Fix
Promp:landscape architecture,masterplan,(forest),plaza,pavement road,(river),dvArchModern,hyperrealistic,super detailed,delicate,intricate,high dynamic,high dynamic range
Negative prompt:signature,soft,blurry,drawing,sketch,poor quality,ugly,text,type,word,logo,pixelated,low resolution,saturated,high contrast,oversharpened)
通过四篇博客,博主从ControlNet的基本概念、作用、操作流程、基本用法进行了总结,还没看过的小伙伴建议翻阅博主讲解ControlNet的其他三篇博文,并最好动手试一试,掌握了这四篇博客的内容,你将对ControlNet有了一个基本的认知,对常见的图像处理也将有一个大概的框架。欢迎点赞、关注、收藏支持一波,更多AI绘画教程敬请期待!

stable diffusion controlnet是一个用于网络技术的源码,它主要用于实现网络的扩散控制功能。扩散控制是指通过调整网络节点之间的通信速率,以实现网络资源的平衡利用和避免网络拥塞的技术。 源码分析是指对该源码进行深入的研究和解析。 首先,stable diffusion controlnet的源码可以从开源社区或者相关的资源库获取。我们首先需要对源码进行编译和构建,确保可以成功地在我们的环境运行。 然后,我们可以对源码的结构进行分析。通常,源码会包含多个文件和目录,其主要包括各种类、函数和变量的定义和实现。我们需要仔细阅读每个文件和目录的功能和作用,了解它们之间的关联和调用关系。 在阅读源码的过程,我们可以关注以下几点: 1. 网络扩散控制算法:源码会实现网络扩散控制的核心算法。我们需要了解算法的原理和实现方式,以及它如何根据网络环境的变化来动态地调整节点之间的通信速率。 2. 数据结构:源码通常会定义一些数据结构,用于存储和处理网络的节点信息、拓扑结构和通信状态。我们需要了解这些数据结构的定义和使用方式,以及它们在算法的作用。 3. 调度和控制逻辑:源码可能会包含一些调度和控制逻辑,用于管理网络各个节点的通信行为。我们需要分析这些逻辑的实现方式和策略,了解它们如何协调和控制节点之间的通信行为,以保证网络资源的平衡利用和避免拥塞。 4. 代码的可读性和健壮性:除了功能实现外,源码的可读性和健壮性也是需要关注的。我们可以评估源码的编码规范、注释和错误处理机制等方面,以确保代码的可维护性和稳定性。 总之,通过对stable diffusion controlnet源码的分析,我们可以深入了解网络扩散控制技术的实现方式和原理,为实际应用和二次开发提供参考和指导。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值