langchain自定义vllm chat model实现知识库RAG快速推理

原本方法:继承langchain.llms.base import LLM类 实现一个CustomLLM

BaseLLM官方文档

我使用的是Qwen2模型,原本改写的模型:

class QwenLM(LLM):
    # 基于本地 Qwen 自定义 LLM 类
    tokenizer : AutoTokenizer = None
    model: AutoModelForCausalLM = None

    def __init__(self, model_path :str):
        # model_path: Qwen 模型路径
        # 从本地初始化模型
        super().__init__()
        print("正在从本地加载模型...")
        model_dir = ''
        self.tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
        self.model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True).eval()
        # Specify hyperparameters for generation
        self.model.generation_config = GenerationConfig.from_pretrained(model_dir, trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
        print("完成本地模型的加载")

    def history_to_messages(self,history):
        messages = [{'role': 'system', 'content': 'xxx'}]
        for h in history:
            messages.append({'role': 'user', 'content': h[0]})
            messages.append({'role': 'assistant', 'content': h[1]})
        return messages

    def model_chat(self,model, tokenizer, prompt, history=None):

        model_name_or_path = 'Qwen2'
        
        # Assume other models have chat method
        if "Qwen2" not in model_name_or_path:
            return model.chat(tokenizer, prompt, history=history)
        else:
            if history is None:
                history = []
            else:
                history = copy.deepcopy(history)
                    
            messages = self.history_to_messages(history)
            messages.append({'role': 'user', 'content': prompt})
            text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
            generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, pad_token_id=tokenizer.eos_token_id)
            generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
            response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
            history.append((prompt, response))
            return response, history

    def _call(self, prompt : str, stop: Optional[List[str]] = None,
                run_manager: Optional[CallbackManagerForLLMRun] = None,
                **kwargs: Any):
        # 重写调用函数
        # response, history = self.model.chat(self.tokenizer, prompt , history=[])

        response,history = self.model_chat(self.model,self.tokenizer,prompt)
        return response
   
    @property
    def _llm_type(self) -> str:
        return "QwenLM"

但是发现用这种情况去推理的时候每次都要load model和tokenizer,非常耗时,所以想到先把模型用vllm部署然后推理,能大幅提升模型推理的效率,故我改写并定义VLLMChatModel模型如下:

class VLLMChatModel(LLM):
    # 基于vLLM的自定义LLM类
    api_client: OpenAI = None

    def __init__(self, api_base_url: str):
        super().__init__()
        self.api_client = OpenAI(api_key="EMPTY", base_url=api_base_url)

    def history_to_messages(self, history):
        messages = [{'role': 'system', 'content': ''}] #system prompt自行补充
        for h in history:
            messages.append({'role': 'user', 'content': h[0]})
            messages.append({'role': 'assistant', 'content': h[1]})
        return messages

    def model_chat(self, prompt, history=None):
        if history is None:
            history = []

        messages = self.history_to_messages(history)
        messages.append({'role': 'user', 'content': prompt})

        # 调用vLLM API
        response = self.api_client.chat.completions.create(
            model="Qwen2-7B-Instruct_2",
            messages=messages,
        )

        generated_text = response.choices[0].message.content
        history.append((prompt, generated_text))
        return generated_text, history

    def _call(self, prompt: str, stop: Optional[List[str]] = None,
              run_manager: Optional[CallbackManagerForLLMRun] = None,
              **kwargs: Any):
        # 重写调用函数
        response, history = self.model_chat(prompt)
        return response
    
    @property
    def _llm_type(self) -> str:
        return "VLLMChatModel"

vllm启动的代码如下 :

export CUDA_VISIBLE_DEVICES=4,5,6,7

python -m vllm.entrypoints.openai.api_server \
    --served-model-name Qwen2-7B-Instruct_2 \ #这个对应定义函数中的model=""
    --model '' \  #Qwen2模型的local path
    --gpu-memory-utilization 0.9 \
    --tensor-parallel-size 4 \ #并行的卡数
    --port 8002 \
    --dtype float

调用定义好的VLLMChatModel:

llm = VLLMChatModel(api_base_url="http://localhost:8002/v1")

# llm = QwenLM(model_path = "") #之前定义的QwenLM其实也可以用

这样之后就可以实现在langchain框架下用自定义的vllm chat model来实现高效率的推理了

完整项目:我实现的是一个用langchain框架结合知识库RAG然后用Qwen2-7b-Instruct模型推理的项目。

langchain框架结合知识库RAG框架代码参考:

https://blog.csdn.net/FL1623863129/article/details/137900683?spm=1001.2014.3001.5506icon-default.png?t=N7T8https://blog.csdn.net/FL1623863129/article/details/137900683?spm=1001.2014.3001.5506完整代码:
 

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '4,5,6,7'

from langchain.document_loaders import UnstructuredFileLoader
from langchain.document_loaders import UnstructuredMarkdownLoader
from langchain_community.document_loaders.csv_loader import CSVLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.prompts import PromptTemplate
from langchain.chains import RetrievalQA
from tqdm import tqdm
import os
from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

from openai import OpenAI

import copy


class VLLMChatModel(LLM):
    # 基于vLLM的自定义LLM类
    api_client: OpenAI = None

    def __init__(self, api_base_url: str):
        super().__init__()
        self.api_client = OpenAI(api_key="EMPTY", base_url=api_base_url)

    def history_to_messages(self, history):
        messages = [{'role': 'system', 'content': ''}] #system prompt自行补充
        for h in history:
            messages.append({'role': 'user', 'content': h[0]})
            messages.append({'role': 'assistant', 'content': h[1]})
        return messages

    def model_chat(self, prompt, history=None):
        if history is None:
            history = []

        messages = self.history_to_messages(history)
        messages.append({'role': 'user', 'content': prompt})

        # 调用vLLM API
        response = self.api_client.chat.completions.create(
            model="Qwen2-7B-Instruct_2",
            messages=messages,
        )

        generated_text = response.choices[0].message.content
        history.append((prompt, generated_text))
        return generated_text, history

    def _call(self, prompt: str, stop: Optional[List[str]] = None,
              run_manager: Optional[CallbackManagerForLLMRun] = None,
              **kwargs: Any):
        # 重写调用函数
        response, history = self.model_chat(prompt)
        return response
    
    @property
    def _llm_type(self) -> str:
        return "VLLMChatModel"
    

class QwenLM(LLM):
    # 基于本地 Qwen 自定义 LLM 类
    tokenizer : AutoTokenizer = None
    model: AutoModelForCausalLM = None

    def __init__(self, model_path :str):
        # model_path: Qwen 模型路径
        # 从本地初始化模型
        super().__init__()
        print("正在从本地加载模型...")
        model_dir = '' #Qwen2模型的local path
        self.tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
        self.model = AutoModelForCausalLM.from_pretrained(model_dir, device_map="auto", trust_remote_code=True).eval()
        # Specify hyperparameters for generation
        self.model.generation_config = GenerationConfig.from_pretrained(model_dir, trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
        print("完成本地模型的加载")

    def history_to_messages(self,history):
        messages = [{'role': 'system', 'content': ''}] #system prompt自行补充
        for h in history:
            messages.append({'role': 'user', 'content': h[0]})
            messages.append({'role': 'assistant', 'content': h[1]})
        return messages

    def model_chat(self,model, tokenizer, prompt, history=None):

        model_name_or_path = 'Qwen2'
        
        # Assume other models have chat method
        if "Qwen2" not in model_name_or_path:
            return model.chat(tokenizer, prompt, history=history)
        else:
            if history is None:
                history = []
            else:
                history = copy.deepcopy(history)
                    
            messages = self.history_to_messages(history)
            messages.append({'role': 'user', 'content': prompt})
            text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
            model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
            generated_ids = model.generate(model_inputs.input_ids, max_new_tokens=512, pad_token_id=tokenizer.eos_token_id)
            generated_ids = [output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)]
            response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
            history.append((prompt, response))
            return response, history

    def _call(self, prompt : str, stop: Optional[List[str]] = None,
                run_manager: Optional[CallbackManagerForLLMRun] = None,
                **kwargs: Any):
        # 重写调用函数
        # response, history = self.model.chat(self.tokenizer, prompt , history=[])

        response,history = self.model_chat(self.model,self.tokenizer,prompt)
        return response
    
        
    @property
    def _llm_type(self) -> str:
        return "QwenLM"


# 获取文件路径函数
def get_files(dir_path):
    # args:dir_path,目标文件夹路径
    file_list = []
    for filepath, dirnames, filenames in os.walk(dir_path):
        # os.walk 函数将递归遍历指定文件夹
        for filename in filenames:
            # 通过后缀名判断文件类型是否满足要求
            if filename.endswith(".md"):
                # 如果满足要求,将其绝对路径加入到结果列表
                file_list.append(os.path.join(filepath, filename))
            elif filename.endswith(".txt"):
                file_list.append(os.path.join(filepath, filename))
            elif filename.endswith(".csv"):
                file_list.append(os.path.join(filepath, filename))
    return file_list

# 加载文件函数
def get_text(dir_path):
    # args:dir_path,目标文件夹路径
    # 首先调用上文定义的函数得到目标文件路径列表
    file_lst = get_files(dir_path)
    # docs 存放加载之后的纯文本对象
    docs = []
    # 遍历所有目标文件
    for one_file in tqdm(file_lst):
        file_type = one_file.split('.')[-1]
        if file_type == 'md':
            loader = UnstructuredMarkdownLoader(one_file)
        elif file_type == 'txt':
            loader = UnstructuredFileLoader(one_file)
        elif file_type == 'csv':
            loader = CSVLoader(one_file)
        else:
            # 如果是不符合条件的文件,直接跳过
            continue
        docs.extend(loader.load())
    return docs

# 目标文件夹
# tar_dir = [
#     "/root/autodl-tmp/qwen",
#     "/root/autodl-tmp/Qwen",
# ]


#构建向量数据库并持久化到磁盘上
def generate_vectordb():
    tar_dir = ["/raid/home/specter/enhance_llm/qa_bot/hbv_data"]

    # 加载目标文件
    docs = []
    for dir_path in tar_dir:
        docs.extend(get_text(dir_path))

    # 对文本进行分块
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=500, chunk_overlap=150)
    split_docs = text_splitter.split_documents(docs)

    # 加载开源词向量模型
    embeddings = HuggingFaceEmbeddings(model_name="/raid/home/specter/enhance_llm/qa_bot/embedding_model")

    # 构建向量数据库
    # 定义持久化路径
    persist_directory = '/raid/home/specter/enhance_llm/qa_bot/data_base/vector_db/chroma'
    # 加载数据库
    vectordb = Chroma.from_documents(
        documents=split_docs,
        embedding=embeddings,
        persist_directory=persist_directory  # 允许我们将persist_directory目录保存到磁盘上
    )
    # 将加载的向量数据库持久化到磁盘上
    vectordb.persist()



def decode_2(user_description):

    #构建向量数据库并持久化到磁盘上
    generate_vectordb()
        
    # 加载开源词向量模型
    embeddings = HuggingFaceEmbeddings(model_name="/raid/home/specter/enhance_llm/qa_bot/embedding_model")

    # 向量数据库持久化路径
    persist_directory = '/raid/home/specter/enhance_llm/qa_bot/data_base/vector_db/chroma'

    # 加载数据库
    vectordb = Chroma(
        persist_directory=persist_directory, 
        embedding_function=embeddings
    )

    llm = VLLMChatModel(api_base_url="http://localhost:8002/v1")

    # llm = QwenLM(model_path = "") #loacl path自行补充

    # 我们所构造的 Prompt 模板
    template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
    {context}
    问题: {question}
    有用的回答:"""

    # 调用 LangChain 的方法来实例化一个 Template 对象,该对象包含了 context 和 question 两个变量,在实际调用时,这两个变量会被检索到的文档片段和用户提问填充
    QA_CHAIN_PROMPT = PromptTemplate(input_variables=["context","question"],template=template)

    qa_chain = RetrievalQA.from_chain_type(llm,retriever=vectordb.as_retriever(),return_source_documents=True,chain_type_kwargs={"prompt":QA_CHAIN_PROMPT})

    question = user_description

    result = qa_chain({"query": question})
    print("检索问答链回答 question 的结果:")
    print(result["result"])

    return result["result"]

    # # 仅 LLM 回答效果
    # result_2 = llm(question)
    # print("大模型回答 question 的结果:")
    # print(result_2)


if __name__ =='__main__':
    decode_2('') #补充user_description内容
  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值