2023年8月,《Environmental Health Perspectives》(一区,IF=10.4 )刊登题为:Ambient Air Pollutants and Olfaction among Women 50-79 Years of Age from the Sister Study的研究论文。
这项研究为一项探索性研究,旨在环境中的细颗粒物和二氧化氮与中老年女性嗅觉障碍的关系。结果表明,没有发现令人信服的证据表明空气污染物对50-79岁女性的嗅觉有持久的有害影响。
摘要与主要结果
一、摘要
背景:嗅觉不良在老年人中很常见,可能对他们的健康有深远的不利影响。然而,对嗅觉不良的潜在环境因素知之甚少。
方法:姐妹研究是一项由 50884 名美国女性组成的全国性队列,根据参与者从入组(2003-2009 年)到 2017 年的居住地估算年均空气污染物暴露量。本分析仅限于在 2018-2019 年完成简短嗅觉识别测试(B-SIT)的 3345 名女性,她们的年龄在 50-79 岁之间(截至 2018 年 1 月)。在主要分析中,嗅觉不良被定义为 B-SIT 得分为。我们进行了多变量逻辑回归,考虑了协变量和研究抽样设计。
结果:总体而言,我们几乎没有发现空气污染物与嗅觉不良有关的证据。在 2006 年,空气污染物每增加一个四分位数区间(IQR),嗅觉不良的几率比(OR)和 95% 置信区间(CI)分别为:(每)1.03(95% CI:0.91, 1.17);(每)1.08(95% CI:0.96, 1.22)。使用最新(2017 年)或累计平均(2006-2017 年)空气污染物暴露数据进行的分析结果相似。二次分析表明,在某些亚组中存在潜在关联。年龄较小的参与者(岁)的每IQR 的OR 为 1.35(95% CI:1.11,1.65),目前吸烟者的每IQR的OR 为 1.87(95% CI:1.29,2.71)。
结论:这项研究没有发现令人信服的证据表明空气污染物会对 50-79 岁女性的嗅觉产生持久的不利影响。亚组分析是探索性的,研究结果需要独立证实。
二、研究结果
1.基线特征
表 1 列出了子研究样本的特征,其平均值和百分比与姊妹研究的所有合格参与者进行了权衡。与 B-SIT 测试得分正常的女性相比,测试不及格的女性年龄更大,她们更有可能报告为非西班牙裔黑人、教育水平较低、居住在南部人口普查地区、健康状况一般或较差以及家庭收入较低。虽然颗粒物 PM2.5 和二氧化氮 NO2 和二氧化氮 从 2006 年到 2017 年都有大幅下降,但在这两个时间点上,嗅觉不灵敏的女性和嗅觉灵敏的女性的暴露水平相当。
2.PM2.5或NO2的基线暴露均与B-SIT测试的嗅觉的关联
在主要分析中,PM2.5或NO2的基线暴露均与B-SIT测试的嗅觉差显著相关(表2)。不同协变量集的调整几乎没有改变结果。在完全校正模型中,与最低四分位数相比,最高四分位数的OR和95%置信区间(CI)为1.07(95% CI:0.82,1.40),PM2:5和1.18(95% CI:0.88,1.58)。对于每个IQR增量,估计值为1.03(95% CI:0.91,1.17)和1.08(95% CI:0.96、1.22)。敏感性分析仅限于入组时或随访期间稳定居住的受试者,结果相似(表3)。此外,我们没有发现嗅觉不良与2017年最近的暴露水平或2006年至2017年的累积平均值之间的显著关联(表4)。在使用不同B-SIT临界值(表S3)或B-SIT作为顺序结局(表S4)的分析中观察到相似结果。
3.探索性的交互作用分析
在探索性的交互作用分析中(图1和2),数据显示基线空气污染物与年轻女性(<54.2岁)嗅觉差呈正相关,PM2.5的结果具有统计学意义(OR/IQR =1:35; 95%CI:1.11,1.65)。此外,在目前吸烟者中,基线NO2与嗅觉差有统计学相关性(OR/IQR =1:87; 95%CI:1.29,2.71)。在使用2006年至2017年的累积暴露量(图S1)或使用≤8作为B-SIT临界值(图S2)的分析中获得了相似的结果。
设计与统计学方法
一、研究设计
P参与者:姐妹研究队列的参与2018 -2019年的嗅觉子研究的50-79岁的老年人
E暴露:PM2.5和NO2
O结局:B-SIT量表测评的嗅觉
S研究类型:横断面研究
二、统计方法
1.使用多变量逻辑回归分析暴露于空气污染物是否与DFU-3时自我报告的嗅觉相关,以及它们是否相互作用的回归B-SIT测试嗅觉
2.基于贝叶斯信息准则的最佳子集方法,用于协变量选择
3.在描述性分析中,我们给出加权平均值和百分比,将数据外推到第三次随访的所有合格参与者,使用每个个体的体重计算为抽样权重和预测结果不缺失概率的倒数的乘积。
4.在初步分析中,我们检查了2006年的空气污染物水平与2018-2019年B-SIT测试差嗅觉的关系,使用多变量Logistic回归调整了协变量。
5.进行了多重敏感性分析
6.进行了交互分析
7.所有分析使用SAS(版本9.4; SAS Institute Inc.)双侧检验,显著性水平为0.05。
小结
一、文章分析思路:
选用的子数据集,考虑数据权重
分别分析基线水平的PM2.5和NO2暴露与嗅觉的关联
分析PM2.5和NO2的累计暴露和最近暴露与嗅觉的关联
敏感性分析
交互作用分析
二、文章亮点
研究内容较为新颖,填补了空气污染物与嗅觉关联的空白,且作者在讨论中指出亚组分析是探索性的,研究结果需要独立的证实。
一个专门做公共数据库的公众号,关注我们