巨简单!免费教你,公共数据库GBD的数据下载!今天刚发了一篇BMJ,心动不如行动...

f63d0aa075f199939aaace3293730d24.png

GBD数据库真属于宝藏级了!又霸榜Lancet,又发表BMJ的,本公众号之前已经解读了3篇Lancet文章,感兴趣可以看看,了解一下这个数据库。

GBD在手,毕业不愁!如何提前了解最新数据《GBD2021》?来看看这篇Lancet

医学顶刊Lancet的常驻选手,宝藏级数据库,不准你不知道!

IF=168.9!0实验发医学顶刊柳叶刀,来看看这个公开数据库,带你发文SCI!

今天,中国学者用GBD2019数据发表了医学顶刊《BMJ》,题为:“Global burden of type 1 diabetes in adults aged 65 years and older, 1990-2019: population based study”,研究者基于GBD数据库,根据社会发展水平和老年人口的年龄和性别,调查了1990-2019年全球、区域和国家水平≥65岁成年人的1型糖尿病患者(T1DM)相关患病率、死亡率和残疾调整生命年(DALYs),还评估了可能影响老年T1DM患者DALYs的因素。

不过现在的文章都是《GBD2019》的数据,《GBD 2021》数据刚刚发布,这可是个大好机会!总的来说,GBD的发文套路基本差不多,都是地区+病种+年龄段人群的组合,选题不难。分析也大差不差,一个套路,报告一下患病率,死亡率和疾病负担,涵盖病种多,你可以看看!

郑老师团队也有1对1指导的服务,专业做GBD数据库分析,手把手指导,不怕没基础,可以了解一下!开了头就好说了,写一篇之后你会感觉很顺手的。

欢迎报名,GBD公共数据库挖掘1对1指导高级班,快速发表SCI论文!

今天我们主要任务就是教你下载这个宝藏数据库GBD的数据!

GBD数据库官网

在开始介绍之前,我们先来看看GBD官网,之后我们所有的研究都将围绕这个页面展开。

官网链接:https://www.healthdata.org/research-analysis/gbd

dc78bfd95d6e73cc50d96c14bbf71982.png

数据来源

GBD数据库来源分为两类:

  • 主要数据来源(https://ghdx.healthdata.org/gbd-2021/sources)

2a89526996015a2158677ed099a0b1fa.png

  • 其他数据来源-IHME data(https://ghdx.healthdata.org/ihme_data)

7439971ed58a4e0e472c14ed60acf24a.png

数据下载

1. GBD数据库首页上方有几个选项框,点击“Data tools and practices”下拉箭头然后选择“Data sources”

5e15166c35c85508217c848d5e8ff41a.png

2. 在新出现的页面中继续点击“VISIT OUR DATA CATALOG”

73275473d8e971ccc62f72558a299381.png

3. 在这个界面中,我们可以按照需求,选择“GBD 2021 data ”“All IHME data ”的数据。

e3561686d5dfa311862b87f668a27a63.png

4. 点击上个界面的“GBD 2021 data ”,看到以下界面后继续点击“GBD 2019 Data Resources”

7963c8ad0f501a0207d84b5ab0510889.png

5. 在新页面点击“query tool”

6c473b7e4a450bdbceeb6d6232030999.png

6. 最终出现我们想要的界面,新用户可以先注册,已经注册好的直接登录就行。

4aa2239c50c5cf6e09214734b59edbcd.png

数据下载-以心血管为例

1. 第一步,可以把语言换成自己熟悉的。当然,要是英语好或者想锻炼一下自己,也可以不换。

62b871bceeefaf4a58203b90c72e3b94.png

2. 新的界面可以分为左右两大块,左边是搜索栏,右边是结果栏。

  • 左边可以通过GBD Estimate,Measure,Metric,Risk,Cause,Location,Age,Sex,Year的不同选项来限制搜索条件以获得自己想要的数据。

eca9459b57cc4ddb3b1136232e1e64e3.png

3. 通过搜索,我们得到了2021 年全球全因死亡和伤残调整生命年 (DALY)。

79ba760bc3832125309c7b8b9cb8a7b2.png

点击“Charts”即可获得1990 年以来全因死亡和伤残调整生命年 (DALY)的趋势。  

84e641956da9f5a5dbb09d29ef0a04a4.png

4. 在左侧搜索栏下方选择“Download”。

8b3dfd8038acc4ac8257d637eca0591f.png

弹出以下界面,选择“Submit”提交

bbc5b8e99df63ecfcb80506b3772ec70.png

可以直接在新界面选择“here”,按照提示操作,获得我们想要的数据。

571d2c91ad2c37bca647654947543139.png

fdfdb60c34fae924ac1e02a97c1899cc.png

我们也可以查看自己的邮件,点击链接也可跳转上方的下载界面。

b060b4bfc1ba0943e4bf41a0eea806f2.png

通过上面几步,我们就顺利获得了后续进行数据分析的文件,是不是很简单呢?数据有了,下一步就是一系列的数据统计分析,这正好是老郑我的特长。不知道怎么挖掘数据或者分析的,快快参加郑老师的GBD公共数据库挖掘课程,由浅入深,帮助你快速掌握GBD数据库的数据挖掘、数据分析!

没数据?来学习GBD课程吧!利用全球健康数据,1-2个月快速撰写SCI论文

78c720c591a150dbe05b2d3671aa697a.png

### GBD 数据库绘图与可视化的工具和方法 #### 使用 GDAL 解析 GDB 文件地理数据库 GDAL 是一种强大的开源 GIS 工具包,能够解析 FileGDB 和 OpenFileGDB 驱动支持的地理数据库文件。通过加载这些驱动程序,可以读取 GDB 中存储的空间数据和其他属性信息。基本操作流程包括初始化 GDAL 库、设置驱动程序以及打开目标 GDB 文件[^1]。 ```python from osgeo import ogr # 初始化驱动 driver = ogr.GetDriverByName('OpenFileGDB') # 打开 GDB 文件 gdb_path = 'path_to_your_gdb_file.gdb' dataSource = driver.Open(gdb_path, 0) if dataSource is None: print("无法打开指定的 GDB 文件") else: layer_count = dataSource.GetLayerCount() for i in range(layer_count): layer = dataSource.GetLayerByIndex(i) feature_count = layer.GetFeatureCount() print(f'第 {i} 层次名称: {layer.GetName()}, 特征数量: {feature_count}') ``` 上述代码展示了如何利用 Python 脚本调用 GDAL 来访问 GDB 的层次结构及其特征计数。 #### EasyGBD 工具的应用 除了编程方式外,还可以借助图形化界面工具来简化复杂的数据处理过程。EasyGBD 提供了一个友好的用户交互平台,允许用户轻松连接至不同的关系型数据库(如 MySQL、PostgreSQL 或 SQL Server),从而实现快速查询、管理和可视化功能[^2]。 #### 制作双 Y 轴图表 当需要在同一张图上比较两个不同尺度变量时,可以选择创建双 Y 轴图表。这种方法特别适合展示来自 GBD 数据库中的多维度指标变化趋势。例如,可以用左侧纵坐标表示病率率值,右侧则对应死亡人数或其他关联参数[^3]。 以下是使用 Matplotlib 实现的一个简单例子: ```python import matplotlib.pyplot as plt fig, ax1 = plt.subplots() # 设置第一个 y 轴的数据 ax1.set_xlabel('年份') ax1.set_ylabel('病病例', color='tab:red') ax1.plot([2000, 2010, 2020], [100, 80, 70], color='tab:red') # 假设数据 ax1.tick_params(axis='y', labelcolor='tab:red') # 创建第二个 y 轴实例并与原始共享相同的 x 轴 ax2 = ax1.twinx() ax2.set_ylabel('死亡案例', color='tab:blue') ax2.plot([2000, 2010, 2020], [50, 40, 30], color='tab:blue') # 假设数据 ax2.tick_params(axis='y', labelcolor='tab:blue') plt.title('某疾病的病率 vs 死亡率 (2000-2020)') plt.show() ``` 这段脚本演示了怎样构建具有独立刻度范围却共存同一横坐标的两套数值体系图像。 #### 构建热力图 为了更清晰地揭示空间或者时间序列上的模式分布特性,采用热力图形式往往更为有效。特别是在公共卫生统计领域里,它可以帮助研究人员迅速识别高风险区域或时间段内的异常现象[^4]。 下面给出一段基于 Seaborn 库生成热度矩阵图案的例子: ```python import seaborn as sns; sns.set_theme() import pandas as pd # 示例 DataFrame data = {'Year': ['2000','2000','2010','2010'], 'Country':['USA','China','USA','China'], 'Value':[10,20,15,25]} df = pd.DataFrame(data).pivot(index="Year", columns="Country", values="Value") sns.heatmap(df, annot=True, fmt=".1f", cmap="coolwarm") plt.title('国家间年度对比热力图') plt.show() ``` 此段代码片段说明了转换表格布局以便适配热量映射需求的过程,并最终呈现出带有注解标签的颜色渐变效果画面。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值