中国蝉联第一!GBD数据库2024年大盘点,发文量稳步上升中

要说医学领域2024年最具亮点的数据库,绝对非GBD莫属!

全球疾病负担(Global Burden of Disease, GBD)数据库是一个由全球卫生研究机构组织的综合数据库,用于评估和分析全球及各地区的疾病、伤害和风险因素的健康影响。

2024年那么多人进军GBD

有何原因?

  • 数据多、科室广、准确率高!

GBD 数据库是全球最全面的健康数据库,涵盖了1990到2021年,204个国家和地区的健康数据,几乎90%科室都能在GBD中找到需要的疾病数据。

  • 好做、好发、顶刊常客!

很多期刊都欢迎接收GBD数据库文章。以顶刊Lancet为例,仅2024年,GBD数据库的发文量就高达37篇

e471be874d4ab5cf81c0725544727586.png

最重要的是,该数据库将所有的数据向全球用户开放,不需要注册,不需要缴费!!! 

GBD好处不止于此!今天来详细盘点一下2024年GBD研究领域的各方面情况,让大家通过数据进一步了解GBD数据库的硬实力。

以下数据分析结论是基于PubMed文献数据库,以Global Burden of Disease为关键词通过citexs数据分析平台得出,仅供参考哦。

01

GBD近十年发文趋势

据不完全统计!过去十年,GBD数据库相关文献共发表17,080篇,年均发文量为1,708篇。2024年,GBD数据库创发文量创顶峰共3,255篇,2020增长率最快为40.2%,提示该领域的研究得到快速发展,处于快速上升阶段。

98dbd9598fa12f8a6f2d72a11eb5404c.png

从近两年的发文量可以看出,GBD数据库正处于稳步上涨阶段,未来发文前景美好,还在犹豫的小伙伴可以抓紧冲了!

当然啦,如果大家对这方面的缺乏好的灵感,对于应学习哪些文献、如何选择期刊感到困惑,那就继续往下看吧!

02

2024年度GBD全球发文趋势

2024年,在GBD数据库研究领域,中国以发文量1,084篇占比33.3%,稳居第一,美国(832篇,25.56%)与英国(378篇,11.61%)次之。

其中,华盛顿大学以52篇的发文量占据第一,而来自中国的北京大学和首都医科大学,分别以50篇和49篇的战绩,拿下了全球第二名和第三名。

并且值得一提的是,在全球发文量排名前十的机构中,有六个来自中国。

c13e4d3def0b4233372477067203c40e.png

03

主要发文期刊

2024年,GBD数据库相关文献共发表3,255篇,发文量排名前10的期刊见下图,其中刊载文献量最多的期刊是BMC Public Health(83篇);Cureus位居第二,刊载文献量70篇;Front Public Health位居第三,刊载文献量49篇。

a459f008b0bd703fd4210a27594d375e.png

04

顶级论文推荐

根据搜索关键词Global Burden of Disease,综合文献被引用次数、发表时间、年份、影响因子等条件,大数据分析平台为大家推荐出10篇文献,感兴趣的朋友可以搜索相关文献进行阅读哦,相信大家会有所收获!!

a10942d883242ebf6437c80831c88cd5.png

05

GBD热点关键词

论文关键词是对研究目的、研究对象、研究方法进行高度凝练与概括。基于关键词的分析能够反映某一研究领域某一时间段内主题演变趋势和研究热点。

下面我们就来盘点一下2024年度GBD领域的热点关键词,出现频次前5的关键词分别是:epidemiology,incidence,mortality,prevalence,disability-adjusted life years。

7e713d0ba4678532a8b241c17b902aae.png

希望这些热点词可以给想用GBD数据库发SCI的同学一些启发与灵感!

好啦,以上就是对2024年度GBD数据库发文情况的大盘点内容啦!希望能够对您新一年的科研深耕有所帮助。愿每一位科研工作者都能在新的一年里深耕细作,收获满满!

关于郑老师团队及公众号

大型医学统计公众号平台,专注于医学生、医护工作者学术研究统计支持,我们是你们统计助理

郑老师团队开设的医学统计培训课程,各类发文需求都可以满足:

GBD公共数据库挖掘NHANES公共数据库挖掘孟德尔随机化方法

真实世界临床研究(临床回顾性数据分析)临床预测模型

临床试验设计与数据分析重复测量资料分析R语言

量表与中介数据分析Meta分析

(目前购买统计课程还可参与发表SCI注明我们平台退课程费用的活动,详情扫描下方二维码添加助教微信咨询详情)

郑老师开发的超便捷免费统计工具了解一下:

www.medsta.cn/software(详情介绍)

详情联系助教小董咨询(微信号aq566665

d6741405c921746a96c3fc753548a2b9.jpeg

### GBD 数据库绘图与可视化的工具和方法 #### 使用 GDAL 解析 GDB 文件地理数据库 GDAL 是一种强大的开源 GIS 工具包,能够解析 FileGDB 和 OpenFileGDB 驱动支持的地理数据库文件。通过加载这些驱动程序,可以读取 GDB 中存储的空间数据和其他属性信息。基本操作流程包括初始化 GDAL 库、设置驱动程序以及打开目标 GDB 文件[^1]。 ```python from osgeo import ogr # 初始化驱动 driver = ogr.GetDriverByName('OpenFileGDB') # 打开 GDB 文件 gdb_path = 'path_to_your_gdb_file.gdb' dataSource = driver.Open(gdb_path, 0) if dataSource is None: print("无法打开指定的 GDB 文件") else: layer_count = dataSource.GetLayerCount() for i in range(layer_count): layer = dataSource.GetLayerByIndex(i) feature_count = layer.GetFeatureCount() print(f'第 {i} 层次名称: {layer.GetName()}, 特征数: {feature_count}') ``` 上述代码展示了如何利用 Python 脚本调用 GDAL 来访问 GDB 的层次结构及其特征计数。 #### EasyGBD 工具的应用 除了编程方式外,还可以借助图形化界面工具来简化复杂的数据处理过程。EasyGBD 提供了一个友好的用户交互平台,允许用户轻松连接至不同的关系型数据库(如 MySQL、PostgreSQL 或 SQL Server),从而实现快速查询、管理和可视化功能[^2]。 #### 制作双 Y 轴图表 当需要在同一张图上比较两个不同尺度变时,可以选择创建双 Y 轴图表。这种方法特别适合展示来自 GBD 数据库中的多维度指标变化趋势。例如,可以用左侧纵坐标表示发病率率值,右侧则对应死亡人数或其他关联参数[^3]。 以下是使用 Matplotlib 实现的一个简单例子: ```python import matplotlib.pyplot as plt fig, ax1 = plt.subplots() # 设置第一个 y 轴的数据 ax1.set_xlabel('份') ax1.set_ylabel('发病病例', color='tab:red') ax1.plot([2000, 2010, 2020], [100, 80, 70], color='tab:red') # 假设数据 ax1.tick_params(axis='y', labelcolor='tab:red') # 创建第二个 y 轴实例并与原始共享相同的 x 轴 ax2 = ax1.twinx() ax2.set_ylabel('死亡案例', color='tab:blue') ax2.plot([2000, 2010, 2020], [50, 40, 30], color='tab:blue') # 假设数据 ax2.tick_params(axis='y', labelcolor='tab:blue') plt.title('某疾病的发病率 vs 死亡率 (2000-2020)') plt.show() ``` 这段脚本演示了怎样构建具有独立刻度范围却共存同一横坐标的两套数值体系图像。 #### 构建热力图 为了更清晰地揭示空间或者时间序列上的模式分布特性,采用热力图形式往往更为有效。特别是在公共卫生统计领域里,它可以帮助研究人员迅速识别高风险区域或时间段内的异常现象[^4]。 下面给出一段基于 Seaborn 库生成热度矩阵图案的例子: ```python import seaborn as sns; sns.set_theme() import pandas as pd # 示例 DataFrame data = {'Year': ['2000','2000','2010','2010'], 'Country':['USA','China','USA','China'], 'Value':[10,20,15,25]} df = pd.DataFrame(data).pivot(index="Year", columns="Country", values="Value") sns.heatmap(df, annot=True, fmt=".1f", cmap="coolwarm") plt.title('国家间度对比热力图') plt.show() ``` 此段代码片段说明了转换表格布局以便适配热映射需求的过程,并最终呈现出带有注解标签的颜色渐变效果画面。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值