TyG指数余热未散?CHARLS一周发了3篇相关文章!| CHARLS等七大老年公共数据库周报(2.9)...

50c4aff3b1e1223dc9e680a5a29ce235.png

七大老年公共数据库

七大老年公共数据库共涵盖33个国家的数据,包括:美国健康与退休研究 (Health and Retirement Study, HRS);英国老龄化纵向研究 (English Longitudinal Study of Ageing, ELSA);欧洲健康、老龄化和退休调查(Survey of Health, Ageing and Retirement in Europe ,SHARE);韩国老龄化纵向研究(Korean Longitudinal Study of Ageing, KLoSA);中国健康与养老追踪调查(China Health and Retirement Longitudinal Survey, CHARLS);墨西哥健康与老龄化研究(The Mexican Health and Aging Study,MHAS);印度纵向老龄化研究 (Longitudinal Aging Study in India,LASI)

我们对发文情况分别作简要文献预览,并报道使用联合数据库发表文章列表。

2.2-2.8期间七大老年公共数据库文献预览

  • 美国健康与退休研究 (HRS):共发文5篇,3篇二区文章;

  • 英国老龄化纵向研究 (ELSA):共发文2篇,1篇二区文章

  • 欧洲健康、老龄化和退休调查(SHARE):共发文2篇,1篇一区文章,1篇二区文章;    

  • 韩国老龄化纵向研究(KLoSA):共发文1

  • 中国健康与养老追踪调查(CHARLS):共发文10篇,2篇一区文章,6篇二区文章;

  • 墨西哥健康与老龄化研究(MHAS):共发文0

  • 印度纵向老龄化研究 (LASI):共发文1

通过PubMed数据库检索发现,2.2-2.8共发表了0篇使用联合数据库的相关主题论文。

HRS公共数据库

Health and Retirement Study(健康与退休研究,HRS)是美国国家老年人口与家庭变化研究所(Institute for Social Research, ISR)主导的一项长期研究项目,始于1992年。

为纵向小组研究,对美国约20,000人的代表性样本进行调查。该项目的主要目标是深入了解美国中老年人口在健康、经济、社会和家庭层面的各种状况和变化。

HRS得到了美国国家老龄研究所(National Institute on Aging, NIA)和社会保障局(Social Security Administration)的支持,被认为是关于老年人口的最全面、最权威的长期研究之一。

通过其独特的深度访谈,HRS 提供了大量宝贵的、不断增长的多学科数据,研究人员可以利用这些数据来解决有关老龄化挑战和机遇的重要问题。

一、PubMed数据库

通过PubMed数据库“Health and Retirement Study”检索发现,2.2-2.8共发表5篇相关主题论文,3篇医学二区文章,部分文章介绍如下。

1.外国学者文章介绍(一)

11925454dc42ced9bfdc9718ae96f15f.png

标题:美国老年照顾者和非照顾者的慢性健康成本负担

目的:慢性健康状况影响到数百万老年人的身体和经济福祉,包括那些自己为亲戚和朋友提供护理的老年人。此外,某些疾病的管理成本高于其他疾病,老年护理人员可能尤其面临疾病带来经济负担的风险。本研究通过测量全国代表性的老年照顾者和非照顾者的特定条件费用样本,调查了照顾与健康成本负担的纵向变化之间的关系。

方法:采用三波健康与退休研究(HRS)进行分析。护理人员的社会人口统计和经济状况与米尔肯研究所开发的慢性病的最新治疗和工资损失成本相匹配。在2016年至2020年的所有三个浪潮年(N = 10,540)完成HRS核心调查的60岁及以上社区居住成年人的健康成本负担概况。使用双变量和回归分析来检查照顾者和非照顾者之间随时间的健康成本负担差异。

结果:与非照顾者相比,照顾者在基线时更健康,负担更轻。然而,在保持其他变量不变的情况下,护理人员在开始护理活动后的四年期间内,慢性病患病率和费用的增加幅度更大。

结论:研究结果表明,尽管老年照顾者可能在健康状况良好的情况下选择照顾者的角色,但随着时间的推移,他们更有可能经历更大的经济和健康负担——包括医疗和工资损失——与慢性病有关。

21265b76b76a699227c7b4b7c8565de3.png

2.外国学者文章介绍(二)

3fef8ad8c59a64aef3af4275290217a9.png

标题:终生受害程度越高,晚年首次IADL限制发作越早吗?

目的:本研究考察了终生受害与晚年健康之间的关系,并询问终生受害程度是否与早期发生IADL限制有关。

方法:使用来自健康与退休研究(N=11,143)的数据,我们构建了三个层次的终身受害(无受害、单一受害和多重受害)。我们使用Weibull加速失效时间模型来检验终身受害水平与IADL限制发作之间的关系。

结果:与没有受害经历的个体相比,单一受害和多重受害分别与早9%和18%的时间出现IADL限制相关。此外,与单一受害的受访者相比,多重受害的受访者更早出现IADL限制。

结论:终生受害是在以后生活中发生IADL限制之前的一个生命过程,特别是在经历过多种类型受害的个体中。未来的研究应该考察那些能够减缓受害人群健康衰退的资源。

5c43ed7d2780a381c1a430bee1e99589.png

3.外国学者文章介绍(三)

d7d0779a6f010c165f3ff50f3a621294.png

标题:健康与退休研究中歧视经历与痴呆之间的关系

目的:在痴呆症方面存在着巨大的种族和民族差异,因此有必要研究潜在的危险因素和干预点。

方法:利用2006年至2016年参与健康与退休研究的大样本(n = 13,733)美国老年居民的数据,我们调查了日常和重大歧视与痴呆症发展之间的关系。通过问卷调查收集日常自我报告和重大歧视的数据。通过一系列认知测试确定可能痴呆状态的算法分类。我们使用逻辑回归模型,并按种族、民族和性别进行分层分析。

结果:我们发现,总体而言,更频繁的日常歧视经历与患痴呆症的几率较高相关(优势比(OR) = 1.18;95%置信区间(CI):1.10, 1.27;P < 0.001)。按种族分层的估计同样表明,日常歧视与痴呆发病几率之间的正相关在非西班牙裔黑人参与者中最高(OR: 1.30;95% ci: 1.13, 1.51;P < 0.001)。

结论:我们的研究结果揭示了日常歧视经历的频率与痴呆症发病之间的联系,并强调了心理社会暴露在健康和疾病中的作用。这项研究强调了社会心理压力源对认知健康的影响。针对历史上边缘化群体所经历的不成比例的社会心理风险因素的干预措施,可能对减轻痴呆症差异和实现痴呆症公平的目标至关重要。

488520265db2dc4941bef607c10e6afe.png

其他医学三、四区文章

21142d13e9da547004fbf22205c4f7c2.png

CHARLS公共数据库

中国健康与养老追踪调查(China Health and Retirement Longitudinal Study,CHARLS)是一项持续的纵向调查,旨在调查中国45岁及以上中老年人社会、经济和健康状况。基线调查于2011年开展,共17708名参与者,每两年追踪一次,目前已有5期数据2011(wave 1)、2013(wave2)、2015(wave 3)以及2018(wave 4),2020(wave 5)。

本周CHARLS文献预览

  • 对PubMed数据库搜索发现,本周发表16篇charls论文。

  • 对CNKI数据库搜索发现,本周发表0篇charls论文。

  • 对中华医学杂志数据库搜索发现,本周发表1篇charls论文。

一、PubMed数据库

通过PubMed数据库“CHARLS”检索发现,2.2-2.8共发表10篇相关主题论文,其中2篇医学一区,6篇医学二区文章。 

1.中国学者文章介绍

ee03e8dafe94ae137047217a9f6d56c5.png

标题:六项胰岛素抵抗替代指标对中国中老年糖代谢异常人群脑卒中发病率预测的评估:一项全国前瞻性队列研究

研究目的:估计葡萄糖处置率(eGDR)、中国内脏脂肪指数(CVAI)、甘油三酯-葡萄糖(TyG)、TyG-体重指数(TyG- bmi)、胰岛素抵抗代谢评分(METS-IR)和血浆动脉粥样硬化指数(AIP)被认为是胰岛素抵抗(IR)的替代指标。比较不同IR替代指标对糖代谢异常个体脑卒中风险的预测价值,目前缺乏相关研究。本研究旨在探讨糖代谢异常个体6项IR替代指标与脑卒中风险的关系,评价其对脑卒中风险的预测能力。

方法:对来自中国健康与退休纵向研究(CHARLS)的数据进行分析。采用多变量logistic回归模型分析IR替代指标与脑卒中风险的关系。使用受限三次样条探讨IR替代指标与卒中风险之间的剂量-反应关系。采用受试者工作特征(ROC)分析计算IR替代指标的曲线下面积(auc)。

结果:在对潜在混杂因素进行校正后,我们观察到eGDR的每一个标准差(SD)增加与卒中风险降低相关,校正优势比(OR)为0.746[95%置信区间(CI):0.661-0.842]。相反,CVAI、TyG、TyG- bmi、METS-IR和AIP每增加一个标准差与卒中风险增加相关,调整后的or (95% ci)分别为1.232(1.106-1.373)、1.246(1.050-1.479)、1.186(1.022-1.376)、1.222(1.069-1.396)和1.193(1.050-1.355)。剂量反应分析显示,eGDR、CVAI、TyG- bmi和METS-IR与卒中风险呈线性相关(p非线性≥0.05),而TyG和AIP与卒中风险呈非线性相关(p非线性< 0.05)。ROC分析显示,eGDR预测糖代谢异常人群卒中风险的AUC (AUC: 0.612, 95% CI: 0.584-0.640)显著高于其他指标。

结论:6项IR替代指标与糖代谢异常的脑卒中高危人群密切相关。eGDR在预测中国中老年糖代谢异常人群卒中风险方面显示出良好的潜力。

985ad8af698871473113bb8ee1d77f57.png

2.中国学者文章介绍

c2d70dc4c04f1794a66d2bbda940237c.png

标题:甘油三酯-葡萄糖及甘油三酯-葡萄糖相关指标与国民心脏病风险的关系

研究目的:甘油三酯-葡萄糖(TyG)、甘油三酯-葡萄糖相关指标与心脏病之间的关系在当前文献中仍然是一个有争议的话题。在中国人群以及糖尿病或非糖尿病患者中关于这种关联的现有证据有限,因此需要进一步研究。

方法:采用队列研究方法,纳入中国健康与退休纵向研究(CHARLS)的7945名受试者。随访9年,收集心脏病发病率。在基线时收集TyG、TyG与体重指数(BMI)、腰围(WC)、腰高比(WHtR)。采用多变量Cox比例风险模型、限制性三次样条(RCS)、Kaplan-Meier (KM)曲线、亚组分析和敏感性分析,分别分析全国参与者、2型糖尿病(T2D)和非T2D患者的TyG及TyG相关指标与心脏病风险的相关性。

结果:在9年的随访中,1477名参与者(18.6%)患上了心脏病。我们的分析发现,TyG-BMI、TyG-WC和TyG-WHtR与所有参与者的心脏病风险之间存在显著的正相关。与最低四分位数相比,最高四分位数的校正风险比(HR)为:TyG-BMI 1.73 (95% CI: 1.47-2.03), TyG-WC 1.46 (95% CI: 1.24-1.71), TyG-WHtR 1.31 (95% CI: 1.11-1.54)。然而,TyG单独与所有参与者的心脏病无关。在非糖尿病患者中,相关性是一致的:TyG-BMI为1.75 (95% CI: 1.47-2.08), TyG-WC为1.47 (95% CI: 1.24-1.75), TyG-WHtR为1.34 (95% CI: 1.13-1.60)。然而,在糖尿病患者中,除了TyG- bmi最高的四分位数外,TyG、TyG- wc、TyG- whtr与心脏病风险之间没有显著关联(HR: 1.86, 95% CI: 1.02-3.40)

结论:在全国人群研究中,较高的TyG-BMI、TyG-WC和TyG-WHtR指数与心脏病风险增加显著相关,其中TyG-BMI和TyG-WC相关性更强。虽然这种关联在非T2D患者中很明显,但只有TyG-BMI与T2D患者的心脏病发病率相关,这强调了进一步研究的必要性。

95eb7616f5f098758a4c40d7a7d0d980.png

3.中国学者文章介绍

2b4ba83fc0c572c1f4bd570a8ad4c5ee.png

标题:使用甘油三酯-葡萄糖-腰围在中国无糖尿病成人中增强卒中风险分层

研究目的:胰岛素抵抗(IR)是卒中的一个公认的危险因素。然而,在非糖尿病人群中,甘油三酯-葡萄糖(TyG)指数、其修正指数TyG-腰围(TyG- wc)、TyG-腰高比(TyG- whtr)和TyG- bmi与卒中风险之间的关系仍未得到充分探讨。

方法:对4029名基线(2011-2012年)无糖尿病的45岁以上参与者的CHARLS数据进行分析,随访至2020年。2024年进行统计分析和建模。研究人员对2015年至2020年间发生的意外中风进行了调查。将TyG及其修正后的指数分为几类,并根据基线水平、随时间变化和累积测量值对其进行分析。采用K-means聚类方法识别TyG及其修正指数的变化,累积指数计算公式为(TyG2012+TyG2015)/2 ×时间(2015-2012)。

结果:2015年至2020年间,225名参与者(5.6%)经历了中风。在完全调整后,对于联合创始人来说,只有TyG- wc在其基线水平、变化和累积测量值的每个水平上都保持显著相关(p < 0.05),优于TyG、TyG- whtr和TyG- bmi。与Tertile 1相比,Tertile 2与TyG-WC相关的卒中AORs分别为1.64(1.10-2.47)和1.79(1.15-2.82)。对于TyG-WC的变化,2类的or值为1.70(1.14-2.60),3类的or值为1.80(1.11-2.97)。累积TyG-WC的or值分别为:Tertile 2的1.61(1.08-2.41)和Tertile 3的1.70(1.10-2.66)。此外,与其他指标相比,TyG-WC对中风的预测性能更佳。

结论:在没有糖尿病的人群中,TyG- wc与卒中风险密切相关,与其他TyG指标相比,提供了更好的风险分层。

639f362028da1639e7bd83dba1f0fb72.png

4.中国学者文章介绍

9bc7ceeff9bc9c9d8af647ea013fa249.png

标题:中国老年人孤独感与疼痛风险的关系

研究目的:本研究探讨了孤独感对中国老年人疼痛体验的长期影响,重点研究了抑郁的中介作用。

方法:数据来自中国健康与退休纵向研究(2013-2020),包括1592名60岁及以上的参与者。使用稳健的混合效应逻辑回归模型。

结果:研究发现孤独的参与者更有可能经历12个部位的疼痛:头痛(OR 1.23;95% CI 1.09-1.39),肩部(OR 1.16;95% CI 1.04-1.30),手腕(OR 1.14;95%CI 1.01-1.28),手指(OR 1.14, 95%CI 1.02-1.28),胸部(OR 1.26;95% CI 1.10-1.44),胃(OR 1.28, 95% CI 1.12-1.46),背部(OR 1.23;95% CI 1.00-1.51),腰围(OR 1.46;95% CI 1.17-1.83)、臀部(OR 1.15, 95% CI 1.02-1.30)、腿部(OR 1.20, 95% CI 1.08-1.33)、膝盖(OR 1.16;95% CI 1.04-1.30),脚趾(OR 1.18;(95% CI 1.04-1.34)。在颈部、手臂或脚踝疼痛中没有发现这样的发现。

结论:孤独带来疼痛的风险并没有随着社交活动频率的增加而降低。这些发现强调了将心理健康作为预防和管理疼痛的关键因素的必要性。

ede6f63c446d8b74b0ff0a7fd1614153.png

5.中国学者文章介绍

64b1860f9b8cde0f48fb309c2cb94e1e.png

标题:与中国老年人认知表现相关的非侵入性身体健康指标概况:来自中国健康与退休纵向研究的证据

研究目的:现有的研究表明,非侵入性身体健康指标作为老年人轻度认知障碍(MCI)的早期检测器的潜在作用。然而,缺乏证据来确定适当的身体健康指标,以早期筛查每个领域的认知能力下降。因此,本研究旨在建立与认知表现相关的综合身体健康指标概况。

方法:本研究采用为期三年的纵向队列设计,数据来自中国健康与退休纵向研究(CHARLS)。分析纳入了2015年和2018年CHARLS浪潮中4,869名年龄在60-97岁之间、认知和身体健康的参与者。物理功能(BMI、握力、血压、平衡测试、全程步行时间、重复站立椅和肺功能)通过物理任务客观测量。认知表现领域(一般认知、情景记忆、执行功能、语言流畅性、定向和语言与实践)通过标准化访谈和认知任务进行测量。采用多元线性回归模型探讨身体健康指标与认知表现之间的关系。进行亚组分析以确定性别特异性因素。

结果:肺功能被确定与老年人认知表现的所有领域相关(β范围在0.05和0.08之间)。右握力也被认为是除一般认知外所有认知领域相关的重要因素(β范围在0.04至0.12之间)。亚组分析显示,身体健康指标与认知表现之间的关联在男性中比在女性中更为明显。

结论:建立了与认知表现相关的非侵入性身体健康指标的概要,这保证了未来将非侵入性身体健康指标纳入轻度认知损伤的早期风险筛查系统,从而使老年人能够及时干预和预防。未来的研究可以更深入地探究身体和认知领域之间这种全维度关系的机制。

b5d60fe3aa2e2725988593bb4737df43.png

6.中国学者文章介绍

745713f46f801a1caada014d730b88ed.png

标题:中老年人群心血管疾病(CVD)发病率特征和机器学习风险预测:来自中国健康与退休纵向研究(CHARLS)的数据

研究目的:随着中国人口老龄化和生活方式的不断演变,中老年人群已成为心血管疾病的高危人群。本研究的目的是分析这些人群中心血管疾病的发病率特征,并利用中国健康与退休纵向研究(CHARLS)的数据建立预测模型。

方法:我们使用CHARLS的随访数据分析中国中老年人群9年的心血管疾病发病率。采用五种机器学习(ML)算法进行风险预测。数据预处理包括随机森林缺失值的输入。在模型训练之前,使用最小绝对收缩和选择算子(Lasso CV)方法进行特征选择,并进行交叉验证。应用合成少数派过采样技术(SMOTE)解决类不平衡问题。通过分析包括ROC曲线下面积(AUC)、精度、召回率、F1评分和SHAP图的可解释性来评估模型的性能。

结果:根据排除标准,四轮随访共纳入12,580、12,061、11,545和11,619名受试者。2、4、7、9年CVD累计发病率(CI)分别为2.846%、8.971%、17.869%和20.518%。CVD发病率在性别、年龄、种族和地区之间存在显著差异,女性和东北地区的发病率较高。最终,8080名参与者和24个特征进行了CVD风险预测分析。基于这些特征构建了5个ML模型。虽然LGB模型的AUC为0.818,整体表现较好,但其F1得分和召回率相对较低,分别为0.509和43.1%。Shapley加性解释(SHAP)分析揭示了关键特征(如夜间睡眠时间、TG水平和腰围)在预测结果中的重要性,并强调了这些特征与心血管疾病风险之间的非线性关系。

结论:性别、年龄、民族、地区是影响心血管疾病发病率的重要因素。尽管LGB模型整体表现良好,但其较低的F1评分和召回率表明其在识别心血管疾病高危患者方面存在局限性。

abd6ee37a59e11f7465c77edb87f6b9e.png

7.中国学者文章介绍

3aa833286f32fdab8cdd3ea3440a0576.png

标题:利用transformer模型预测认知障碍:准确性、效率和可解释性

研究目的:本研究旨在利用中国健康与退休纵向研究(CHARLS)的数据,建立一个增强的Transformer模型来预测轻度认知障碍(MCI),重点是处理混合数据类型并提高预测准确性。

方法:Transformer集成了分类(整数编码)和连续(浮点)数据,使用带有四个头的多头注意来捕获复杂的关系。预处理涉及分类数据的单独嵌入层和连续数据的前馈网络。将该模型与SVM和XGBoost进行比较,使用RMSProp和余弦退火调度程序进行150次训练。关键指标包括准确性、平均绝对误差(MAE)容限和训练损失。生成了一个注意力热图来可视化特征的重要性。

结果:Transformer优于SVM和XGBoost,在MAE容差3.5的情况下实现了超过90%的准确率。模型收敛速度快,损失在20个epoch内趋于稳定。注意热图突出了关键特征,证实了多头注意机制在识别相关变量方面的有效性。

结论:与传统模型相比,增强的Transformer模型在预测认知能力下降方面具有更高的准确性和效率。它处理连续和分类数据的能力及其通过注意机制的可解释性使其成为早期检测神经退行性疾病的有前途的工具,有可能改善临床决策和干预。

c9c72985abb386c2a99ec3ec164c67c9.png

8.中国学者文章介绍

6bf3a455e54514f0f27a6d177911b84c.png

标题:儿童情绪忽视在儿童邻里关系质量与成人抑郁结局之间的中介作用:一项全国性的纵向分析

研究目的:抑郁症是一种普遍存在的精神健康障碍,具有个人和社会成本。童年经历,包括邻里关系质量和情感忽视,可能会影响成年后患抑郁症的风险。探讨儿童邻里关系质量(CNQ)、儿童情绪忽视(CEN)与成人抑郁症状的关系,并探讨CEN的潜在中介作用。

方法:来自中国健康与退休纵向研究(CHARLS)的15730名45岁及以上的中国成年人。采用纵向数据,采用加权多元回归、Karlson-Holm-Breen (KHB)中介和Bootstrap中介分析,评估CNQ、CEN与成人抑郁症状和抑郁风险的关系。

结果:较高的CNQ与较低的抑郁症状(β = -0.316, p < 0.001)和抑郁风险(β = -0.084, p < 0.001)相关。较高的CEN与抑郁症状(β = 0.084, p < 0.01)和抑郁风险增加相关(β = 0.020, p < 0.05)。CEN部分介导CNQ与抑郁症状的关系(KHB: β = -0.010, p < 0.01;Bootstrap: β = -0.007, p < 0.05)和抑郁风险(KHB: β = -0.003, p < 0.05;Bootstrap: β = -0.002, p > 0.05),对抑郁症状的总效应占3.50% (KHB)和2.36% (Bootstrap),对抑郁风险的总效应占3.82% (KHB)和1.97% (Bootstrap)。

结论:CNQ和CEN对成人抑郁均有独立影响,CEN在CNQ-抑郁之间起部分中介作用。这些发现表明,针对社区条件和家庭环境的干预措施可能对预防成人抑郁症至关重要。

d2c3b05facb476408c032d8c1a24169d.png

其他医学三、四区文章

be82ec59ee0d263e535f2963b4d695ab.png

我们团队提供“公共数据库挖掘”服务了

①公共数据库数据下载

②挖掘出具有发表级的结果

③包括SEER、NHANES、老年健康数据库、GBD数据库等

④提供规范的统计分析报告

⑤提供写作建议

联系李老师咨询(微信号sas555777)

703bc595d52652437627a2557f75b7c5.png 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值