中国学者联合NAHNES+CHARLS拿下两篇一区Top! | NHANES数据库周报(3.23~3.29)

【注】如果您对本篇汇总中涉及的NAHNES指标感兴趣,可以私信我们!

NAHENS Online平台会在两周内为您上新!

美国国家健康和营养检查调查(NHANES)是一项旨在评估美国成人和儿童健康和营养状况的研究计划。该调查的独特之处在于它结合了访谈和体格检查。由美国疾病控制和预防中心(CDC)负责为国家提供健康统计数据。

NHANES计划始于20世纪60年代初,并作为一系列针对不同人口群体或健康主题的调查进行。自1999年以来,对美国的人口健康状况进行了更为定期的调查。每次调查中,来自美国约3000个县中30个选定县的约10000名参与者被要求在移动检查中心(MEC)参加家庭访谈、随后的身体检查和实验室测试。

NHANES访谈包括人口统计,社会经济,饮食和健康相关问题。检查部分包括医疗,牙科和生理测量,以及由训练有素的医务人员进行的实验室测试。

一、2025年NHANES文献预览

本周PubMed数据库“标题/摘要:NHANES”搜索发现,共发表88篇NHANES论文。其中3篇一区,31篇二区

1中国学者文章介绍(一)

文章题目探讨中老年人血清尿酸、痛风与心脏、肾脏和代谢状况之间的相互关系。

究背景心脏、肾脏和代谢 (CRM) 疾病是全球发病率和死亡率的主要原因。本研究旨在探讨中老年人群血清尿酸 (SUA) 、高尿酸血症、痛风和 CRM 疾病之间的关系。

数据与方法:样本 1 包括来自 CHARLS(中国健康与退休纵向研究,n=9341)和来自 NHANES(全国健康与营养检查调查,未加权 n=17 913;加权 n=115 646 390)的参与者。采用顺序 logistic 回归、 Cox 回归和限制性三次样条分析来评估 SUA 、 高尿酸血症、痛风和 CRM 疾病之间的关系。进行了 2 样本孟德尔随机化分析,以探讨 SUA 和 CRM 条件之间的因果关系。

结果:在这两个样本中,SUA 、高尿酸血症和痛风与 CRM 疾病的风险呈正相关。在患有 3 种或 ≥1 种 CRM 疾病的参与者中,SUA、无症状高尿酸血症和高尿酸血症控制不佳的痛风与全因死亡率呈显著正相关,而在 SUA 水平正常的痛风患者中未观察到这些关联。限制性三次样条分析显示,在 ≥1 CRM 疾病参与者中,SUA 水平与全因死亡风险之间存在正相关关系,表明两个样本之间存在非线性剂量反应关系 (P 为非线性 <0.05)。孟德尔随机分析表明,SUA 与心血管疾病、慢性肾病和糖尿病呈因果关系。

结论: 高尿酸血症和痛风是 CRM 疾病患病率和死亡率增加的强预测因素,强调了管理这些患者高尿酸血症和痛风的重要性。

2.中国学者文章介绍(二)

文章题目:应激性高血糖比值在评估心血管-肾脏-代谢综合征 0-3 期个体全因和心血管死亡风险中的预后意义:来自两项队列研究的证据。

研究背景:美国心脏协会 (AHA) 提出了心血管-肾脏-代谢 (CKM) 综合征的概念,强调了心血管、肾脏和代谢疾病的相互关联性。应激高血糖比值 (SHR) 代表了一种创新指标,可量化经历急性或亚急性应激的患者的血糖波动,与有害的临床影响相关。然而,SHR 对 0 至 3 期诊断为 CKM 综合征的个体的预后意义,特别是在全因或心血管疾病 (CVD) 死亡风险方面,尚未完全了解。

数据与方法 : 目前的研究根据 9647 年至 2007 年收集的 NHANES(全国健康和营养检查调查)分析了 3 名 CKM 综合征参与者的数据,涵盖 2018 至阶段。在这项研究中,主要暴露变量是 SHR,计算方法是空腹血糖除以 (1.59 * HbA1c - 2.59)。研究的主要终点是全因死亡率和 CVD 死亡率,死亡登记数据来源截至 2019 年 12 月 31 日。使用 CHARLS 数据库 (中国健康与退休纵向研究) 作为验证,以提高研究结果的可靠性。

结果:这项研究包括 9647 名 NHANES 参与者,他们的中位随访时间为 6.80 年。在此期间,共记录了 630 例全因死亡病例和 135 例 CVD 相关死亡。在对协变量进行完全调整后,我们的结果显示 SHR 与全因死亡率呈强正相关 (风险比 [HR] = 1.09,95% 置信区间 [CI] 1.04-1.13)。然而,SHR 与 CVD 死亡率没有显著关系 (HR = 1.00,95% CI 0.91-1.11)。中介分析结果表明,SHR 与全因死亡风险之间的关系部分由 RDW 、 白蛋白 和 RAR 介导。具体而言,中介效应分别为 - 17.0% (95% CI - 46.7%, - 8.7%)、 - 10.1% (95% CI - 23.9%, - 4.7%) 和 - 23.3% (95% CI - 49.0%, - 13.0%)。此外,对 CHARLS 数据库的分析表明,在 2011 年至 2020 年的随访期间,在 0-3 期被诊断为 CKM 的个体中,SHR 与全因死亡率呈显著正相关。

结论: SHR 值增加与 0-3 期诊断为 CKM 综合征的个体全因死亡率增加呈正相关,但它与 CVD 死亡率没有显着相关性。SHR 是预测该人群长期不良结局的重要工具。心血管-肾脏-代谢 (CKM) 综合征强调心血管、肾脏和代谢疾病的相互关联性。应激高血糖比值 (SHR) 是反映应激诱导的血糖波动的新标志物,但其在 CKM 综合征 (0-3 期) 个体中的预后价值仍不确定。本研究探讨了 SHR 与该人群全因死亡率和心血管疾病 (CVD) 死亡率之间的关联。我们的研究结果表明,SHR 与全因死亡率风险增加显著相关 (HR = 1.09,95% CI 1.04-1.13),但与 CVD 死亡率无关 (HR = 1.00,95% CI: 0.91-1.11)。中介分析结果表明,SHR 与全因死亡风险之间的关系部分由 RDW 、 白蛋白和 RAR 介导。具体而言,中介效应分别为 - 17.0% (95% CI - 46.7%, - 8.7%)、 - 10.1% (95% CI - 23.9%, - 4.7%) 和 - 23.3% (95% CI - 49.0%, - 13.0%)。使用 CHARLS 数据库的验证支持这些发现。这些结果表明,SHR 可以作为 CKM 患者长期死亡风险的预后生物标志物,在风险分层和管理中提供潜在的临床效用。

3.中国学者文章介绍(三)

文章题目:总胆红素改变了糖尿病与中风之间的关联:NHANES 2011-2016 的横断面研究。

研究背景与目的 总胆红素 (TBIL) 具有抗氧化和抗炎特性。本研究旨在确定升高的 TBIL 是否可以改变糖尿病与中风之间的关联。

数据来源与方法 : 数据来自 2011-2016 年全国健康和营养检查调查。TBIL 按中位数 (10.3 μmol/L) 分层。使用多变量 logistic 回归模型量化糖尿病与中风之间的关联。通过 Johnson-Neyman 分析确定存在 TBIL 修饰效应的临界浓度。进行中介分析以确定 TBIL 对介导糖尿病和中风之间关系的中介因子的影响。

结果: 这项横断面研究包括 16 130 名参与者,平均年龄为 46.8±0.4 岁,男性为 48.5%。糖尿病与 TBIL <10.3 μmol/L 时中风的存在相关 (OR=2.19,95% CI 1.58 至 3.05),但在 TBIL ≥10.3 μmol/L 时不相关 (OR=1.27,95% CI 0.85 至 1.88) 在调整混杂因素后。上述关联在两种 TBIL 浓度之间存在显著差异 (P for interaction) = 0.03)。此外,TBIL 的修饰作用特别发生在男性 (P for interaction=0.02) 而不是女性 (P for interaction) (P for interaction) 后。存在 TBIL 修饰作用的临界浓度为 17.05 μmol/L。此外,≥10.3 μmol/L 的 TBIL 抑制了超敏 C 反应蛋白(介导效应=0.03,95%CI -0.15 至 0.22,P=0.72)和全身免疫炎症指数( 介导效应=0.01,95%CI -0.01 至 0.04,P=0.29)的介导作用,与 <10.3 μmol/L 的 TBIL 相比。

结论:TBIL 升高通过抑制炎症因子的介导作用改变糖尿病与卒中之间的关联。

更多文章如下:

外国学者:

中国学者:

一个专门做公共数据库的公众号,关注我们

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值