Airbnb数据分析实战(MySQL +PowerBI)

通过对Airbnb的数据分析,发现用户主要为26-40岁的女性,付费转化率在26-40岁和61-70岁之间较高。Direct和sem-brand谷歌渠道在拉新和转化中表现突出,但content-google的转化率较低。转化漏斗中,从注册到预定的转化率仅为14.04%,需要优化用户体验和支付流程。建议针对目标用户群体进行精准营销,提高转化率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、项目背景和分析总结

在这里插入图片描述

Airbnb,中文名为爱彼迎,成立于2008年8月,是一个旅行房屋租赁社区,用户可通过网络或手机应用程序发布、搜索度假房屋租赁信息并完成在线预定程序。2011年,Airbnb服务迅猛增长了800%。

1.1 分析目的
  • 构建Airbnb的目标用户群体画像;
  • 观察Airbnb的用户增长趋势和付费转化率情况;
  • 评估各推广渠道的质量;
  • 考察各流程转化率情况;
1.2 分析框架

在这里插入图片描述

1.3 分析总结
用户分析总结:

(1)用户画像

  • 性别:注册用户中女性占比53.66%,男性占比46.34%,女性占比略高于男性占比,二者差异不大。
  • 年龄:用户年龄分布广泛,主要分布在26-40岁,这区间各年龄段的转化率都超过55%。在超过50岁的用户群体中,用户数量随年龄增长逐渐下降,但转化率却呈现增长趋势,61-70岁区间的用户付费转化率在53%左右。
  • 设备和浏览器:desktop设备占主流,Mac占比高于Windows,由于移动端APP处于起步阶段,移动端仅占少数,其中的苹果设备占比高于安卓设备以及其他智能设备。浏览器以Chrome、Safari、Firefox为主,其付费转化率也较有优势。
  • 注册方式和APP:大多数用户采用基本注册方式(即电子邮件),少量用户采用Facebook注册,极少数用户采用google注册;在注册APP方面,绝大部分用户都是在网站上注册,这与前面以Desktop为主的设备分布情况一致。
  • 国家目的地和语言:Airbnb用户覆盖全球多个地区,较受欢迎的目的地集中在发达国家,美国占比最高,使用英语的用户占比高达96.66%,其余语言占比均未超过1%,中文是排名第二的用户语言。

(2)用户行为

  • 在2014年1-6月期间,注册用户数和活跃率总体呈上升趋势,活跃率上升至75%左右的较高水平。
  • 用户增长趋势前期平缓,中后期快速增长,整体向上,趋势健康。用户增长存在季节性规律,每年1-9月都呈增长趋势,并在7-9月达到波段峰值,随后至12月则会小幅下降。
  • 付费转化率初期增长至60%左右,较为理想。随着平台注册用户数增多,度过初期红利后付费转化率逐步下降,维持在40%的水平。
  • 从用户注册、首次活跃分别与首次预定的时间间隔分布来看,用户注册后的50天内和首次活跃的10天之内是预定订单产生的关键时间段,大部分用户对Airbnb的初始信任度和认可度较高,而且越临近首次活跃日期,用户预定意愿越强烈。
营销渠道分析总结:
  • 在拉新方面,Direct(直接营销)和sem-brand-google是最有力的拉新营销渠道,注册用户数排名前五的渠道贡献了近80%的注册用户数,符合二八定律。
  • 在付费转化率方面,注册用户数排名前十的渠道的付费转化率都不低且相差不大,唯独content-google的付费转化率为15.6%,远低于平均值32.3%,需要提升该渠道的质量。
  • 在渠道用户活跃率方面,由google渠道带来的活跃用户数远超其余渠道,活跃用户数排名前五的渠道中google端占据四个。remarketing_google、sem-brand_bing的活跃率高于40%。
  • Sem-non-brand_baidu的用户平均总停留时长最长,而google渠道吸引的用户目的性较强,用户平均总停留时长较短,基于该渠道在用户增长、转化率和活跃率方面都表现不错,说明Airbnb能较高效的满足用户的需求。
  • Direct营销是各国目的地预定订单的最主要贡献者,还可以留意sem-brand和sem-non-brand这两种效果相当的营销方式。
  • 为各国目的地带来最多预定用户的是direct渠道,其次是google渠道,其余渠道的效果与前两者相比都相差甚远。
转化漏斗分析总结:
  • 转化漏斗中流失率最高的是从注册用户到预定用户的部分,转化率仅为14.04%。从支付到复购的转化率有60.39%,较为理想,表明用户的回购意愿较高,拥有较高的忠诚度。
1.4 建议
  • 基于用户画像,目标对象可针对26-40岁的用户,同时考虑高转化率的61-70岁中老年用户。
  • 在注册用户数和活跃率总体呈上升趋势的情况下,转化率却下降趋势明显,应做好对市场现状的整体把握,加强竞品分析,进而找出自身产品的突破口和找准定位。可对新用户做调研,尽快找出转化率下降的关键因素。
  • 针对用户注册后的50天内和首次活跃的10天内这两个关键时间段,对新注册的用户发放优惠券,引导用户做任务获取优惠,首页推送优质房源吸引用户。
  • Direct_direct、sem-brand_google、sem-non-brand_google这三个营销渠道应重点关注,可考虑与google达成更深的战略合作,提升付费转化率。
  • 针对付费转化率低的content-google,需要核算该渠道的ROI和ARPU,若该渠道适合继续投放,再对该渠道的用户做详细的特征描述和需求调研,进而调整渠道投放量和内容。
  • 营销渠道、方式和广告内容的缺失值比较多,建议运营人员和相关技术人员考虑埋点的情况,改善当前的数据情况。
  • 针对从注册到预定过程的严重流失,需结合往期数据进一步分析流失率的变化情况,结合产品生命周期和用户行为挖掘用户流失节点,进一步提高转化率。
  • 针对从预定到支付过程中13%的流失率,根据用户反馈对支付环节流程进行ABTest,找出阻碍用户支付流程的节点,优化支付页面和支付流程。
  • 为支付成功的用户提高优惠回馈,刺激用户二次消费和适当召回。针对可能存在一次出游多次预定的复购用户,做好目的地的房源关联。

二、数据认识

2.1 数据集描述

数据集名称:Airbnb New User Bookings
数据来源:https://www.kaggle.com/c/airbnb-recruiting-new-user-bookings/data

2.2 字段含义
  • train_users表:
    在这里插入图片描述

  • sessions表:
    在这里插入图片描述

三、数据清洗

3.1 缺失值
  • train_users表:
    date_first_booking缺失124543条;
    age缺失87990条;
    first_affiliate_tracked缺失6065条;

  • sessions表:
    user_id缺失34496条;
    action缺失79626条;
    action_type缺失112604条;
    action_detail缺失112604条;
    secs_elapsed缺失136031条;

处理方式:

  • date_first_booking的缺失主要是由于用户未下单,所以没有产生行为数据,不做填补;
  • age的缺失为用户未填写年龄信息,不做填补;
  • first_affiliate_tracked的缺失可能为前端统计数据时未统计完全,不做填补;
  • sessions表中除了device_type以外的其他字段都有不同程度的缺失数据,考虑为前端统计数据时未统计完全,不做填补;
3.2 异常值
  • age最小值为1,最大值为2014;
  • date_account_created>date_first_booking(账号创建时间>第一次 - 预定时间)的异常数据有29条;
  • secs_elapsed为0的数据有104624条;

处理方式:

  • age的异常值推测是用户随意填写行为导致,本篇分析将筛选范围缩至10-80岁;
  • Airbnb发布过声明:从2010年到2013年,用户可以在完全创建帐户之前进行少量预订。为了数据规范性,删除date_account_created>date_first_booking的数据;
  • secs_elapsed推测为前端统计数据时未统计完全,不作修改。

四、用户分析

4.1 用户特征
(1)性别分布

注册用户中女性占比53.66%,男性占比46.34%,女性占比略高于男性占比,二者差异不大。

在这里插入图片描述

(2)年龄分布

注册用户主要集中在26-40岁,占比近60%,付费转化率最高的也是在这个年龄段。而付费转化率较高的用户分布在61-70岁,转化率在53%左右。虽然46-55岁的用户占比不算低,但其转化率未超过50%。

在这里插入图片描述

(3)设备分布

Desktop设备的注册用户占比远高于移动端,这是由于数据时间处于2010-2014年间,移动端app处于起步阶段,尚未普及,大部分的用户都是通过Desktop设备进行注册。其中,Mac占比高于Windows,苹果设备占比高于安卓设备以及其他智能设备。

在这里插入图片描述

(4)浏览器分布

大部分用户是在Chrome、Safari、Firefox、IE四大浏览器上完成注册的,其付费转化率也较有优势,移动端浏览器则以mobile Safari优先。
结合前面设备分布情况,Chrome、Safari、Firefox、IE四大浏览器终端皆为Desktop,Mobile Safari终端为苹果移动设备,均有较高的转化率。

在这里插入图片描述

(5)注册方式和APP分布

大部分用户是采用基本注册方式(即电子邮件),少量用户采用Facebook注册,极少数用户采用google注册;在注册APP方面,绝大部分用户都是在网站上注册,这与前面以Desktop为主的设备分布情况一致。

在这里插入图片描述

(6)国家目的地分布

较受欢迎的目的地主要集中在发达国家,选择以美国作为旅行国家目的地的用户占比最高,法国、意大利、德国依次随后。

在这里插入图片描述

(6)语言分布

Airbnb的用户语言共有25种,表明Airbnb用户覆盖全球多个地区,但使用英语(en)的用户占比高达96.66%,其余语言占比均未超过1%,一方面因为英语是多国通用语言,另一方面是Airbnb创立于美国,前期主要集中在欧美市场。
在排除英语后,中文(zh)是最多用户的使用语言,使用中文的用户可能是国外华裔,也可能是有出国旅游需求的国人。考虑到中文使用者的用户比例和中国市场的巨大潜力,这也可能成为推动Airbnb公司选择入华发展的因素之一。

在这里插入图片描述

4.2 用户行为评估指标分析
(1)月活

由于sessions表中的user_id字段缺失部分数据,只能考察2014年1-6月的月活。本篇分析将行为数大于15的用户定义为活跃用户。
由图可见,注册用户数和活跃率总体呈上升趋势,活跃率仅在2014年3月有小幅度下降,于次月又在注册用户数变化不大的情况下出现反弹式增长,随后维持在75%左右的较高水平。

在这里插入图片描述

(2)用户增长趋势和付费转化率趋势

Airbnb在2010年仍处于萌芽阶段,用户增长都较为平缓,此时的转换率在50%-65%之间。2011年开始逐步发展,2013年-2014年的注册用户数飞跃增长,但付费用户的增长跟不上步伐,转化率下降趋势明显。

由于Airbnb是一款旅游相关产品,新用户增长存在季节性规律,每年1-9月都呈增长趋势,并在7-9月达到波段峰值,随后至12月则会小幅下降,用户转化率则是每年的3月附近会出现小高峰。

值得注意的是,在2012年7月以后,转化率降至42%后没有得到很好的恢复,之后的转化率都不超过45%,可以考虑是以下原因导致的:

  1. 市场开始出现相似的竞品,比如中国就出现了蚂蚁短租、爱日租、自如友家等O2O模式的公寓民宿预定平台,各平台都塑造了自身特色,满足了用户们的不同需求;
  2. Airbnb产品在面临其余竞争者时未能及时作出应变,对自身产品的定位和扩张缺乏更细致的规划和有力的执行,无法让用户感受到Airbnb是一款最适合自己的产品;
  3. 新增长的用户不是优质用户,渠道和运营需要作出调整。

在这里插入图片描述
在这里插入图片描述

(3)用户注册与首次预定的时间间隔

有24.1%的用户在注册当天就进行了首次预定,78.7%用户在注册50天以内便完成了首次预定,表明大部分用户对Airbnb的初始信任度和认可度较高。但仍有15.9%的用户在注册100天以后才首次预定,这些用户可能是因为:

  1. 用户未在Airbnb找到合适满意的房源;
  2. 用户短期内没有出行计划,注册只是为了初步认识Airbnb;
  3. 用户原本有出行计划,但后来取消计划了;
  4. 用户在Airbnb找到合适的房源,但是支付方式对其不适用;
  5. 受旅游业季节性影响,用户需要等待合适的时期才出行。

在这里插入图片描述

在这里插入图片描述

(4)用户首次活跃与首次预定的时间间隔

有24.1%的用户在首次活跃的当天就进行了预定,65.9%的用户在首次活跃的10天之内完成了首次预定,18.1%的用户在首次活跃后的10-100天内完成预定,15.9%的用户在首次活跃后的100-400天内才首次预定,极少数用户在距离首次活跃的400天后进行预定。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

五、营销渠道分析

5.1 各营销渠道用户规模和付费转化率

Direct(直接营销)带来的注册用户数最多,占比64.39%。
在排除Direct后,sem-brand-google(在Google上的搜索引擎营销)的渠道用户占比达到32.98%。注册用户数排名前五的渠道贡献了近80%的注册用户数,符合二八定律。
在付费转化率方面,注册用户数排名前十的渠道的付费转化率都较为理想且相差不大,唯独content-google的付费转化率为15.6%,远低于平均值32.3%,需要提升该渠道的质量。

在这里插入图片描述
在这里插入图片描述

5.2 各营销渠道每月增长用户数

排除direct,选取注册用户数排名前20%的营销渠道进行分析。

  • 从2012年开始,各营销渠道的新增用户数有了明显的增长,此时增长最快的是以sem-non-brand为营销方式的google渠道。
  • 2013年后,以sem-brand为营销方式的google渠道逐渐超越同渠道的sem-non-brand。而以api营销方式的渠道拉新数量也从低峰开始逐渐回升。此前一直不见起色的content_google和seo_google终于有了起伏,但效果有限。
  • 2014年后,sem-brand_google的拉新力度呈指数增长,而其他大部分渠道都出现下滑现象,一方面可能是Airbnb察觉到sem-brand_google的营销推广质量最好,增加了其投放的同时减少了其余渠道的投放,另一方面可能是由于产品更新迭代导致其对于其他渠道的用户吸引力减少。

在这里插入图片描述

5.3 各营销渠道活跃用户数

本篇分析将行为数大于15的用户定义为活跃用户。选取活跃用户数排名前十的营销渠道,sem-brand_google、sem-non-brand_google、seo_google三个营销渠道带来了绝大部分的活跃用户。由google渠道带来的活跃用户数远超其余渠道,占比排名前五的渠道中google端占据四个。

从用户活跃率来看,remarketing_google、sem-brand_bing的活跃率高于40%,较为理想。而活跃用户数排名较前的sem-non-brand_google和api_other的活跃率却低于平均值28.07%。

在这里插入图片描述

5.4 各营销渠道的用户平均总停留时长

由于数据的时间跨度四年以上,所以各营销渠道的用户平均总停留时长较长。
Sem-non-brand_baidu的用户平均总停留时长达到96434s,约26.7小时,远超平均值32222s,但是其注册用户数为18人,活跃用户数仅有5人,而baidu渠道是面向中国市场的推广渠道,有两种可能性,一是该渠道的数据为脏数据,可以排除;二是该渠道吸引的注册用户对Airbnb有较刚性的需求,可以适当增加投放量。

结合前文分析,google渠道在用户增长、转化率和活跃率方面都表现不错,但渠道的用户平均总停留时长只有sem-brand-google(33824s)达到了平均值,表明google渠道吸引的用户目的性较强,另一方面也反映了Airbnb能较高效的满足用户的需求。

在这里插入图片描述

5.5 各营销方式对国家目的地的影响

Airbnb采用了8种营销方式,在11个国家目的地中,各国大量有过预定行为的用户都是direct营销所带来的,尤其是在美国。
在不考虑美国的情况下,除了direct营销,我们还可以留意sem-brand和sem-non-brand这两种效果相当的营销方式。
而content和remarketing未能为各国目的地带来较多的预定订单。

在这里插入图片描述
在这里插入图片描述

5.6 各渠道对国家目的地的影响

Airbnb选择了17个渠道进行营销推广,为各国目的地带来最多预定用户的是direct渠道,其次是google渠道,其余渠道的效果与前两者相比都相差甚远。

在这里插入图片描述
在这里插入图片描述

六、转化漏斗分析

转化漏斗中流失率最高的是从注册用户到预定用户的部分,转化率仅为14.04%。可以考虑以下原因:

  1. 用户对平台提供的房源不感兴趣,平台房源满足不了用户需求;
  2. 平台的交互和功能界面设计得不够理想,如对房源的分类划分不够准确细致,使用户难以找到心仪房源,无法高效下单;
  3. 平台的房源展示不够美观,不足吸引力,描述不全面,可信度和说服力不强;
  4. 房东与客户的交流媒介不够便捷,减弱客户与房东的交流意愿;
  5. 房东经验不足,素养不够高,营销意识不够强;

预定用户中有13%的用户未支付成功,可以根据用户反馈对支付环节流程进行ABTest,优化支付页面和支付流程。

从支

美国著名共享民宿网站 Airbnb 开放的民宿信息和住客评价数据,包括民宿的位置、房间、配置、价格、住客的评分和自然语言评论等。目前Airbnb开放数据的城市如下表所示。 城市名称 省份和地区 所在国家 Amsterdam North Holland The Netherlands Antwerp Flemish Region Belgium Asheville North Carolina United States Athens Attica Greece Austin Texas United States Barcelona Catalonia Spain Berlin Berlin Germany Boston Massachusetts United States Brussels Brussels Belgium Chicago Illinois United States Copenhagen Hovedstaden Denmark Denver Colorado United States Dublin Leinster Ireland Edinburgh Scotland United Kingdom Geneva Geneva Switzerland Hong Kong Hong Kong China London England United Kingdom Los Angeles California United States Madrid Comunidad de Madrid Spain Mallorca Islas Baleares Spain Manchester England United Kingdom Melbourne Victoria Australia Montreal Quebec Canada Nashville Tennessee United States New Orleans Louisiana United States New York City New York United States Northern Rivers New South Wales Australia Oakland California United States Paris France France Portland Oregon United States Quebec City Quebec Canada San Diego California United States San Francisco California United States Santa Cruz County California United States Seattle Washington United States Sydney New South Wales Australia Toronto Ontario Canada Trentino Trentino-Alto Adige_Südtirol Italy Vancouver British Columbia Canada Venice Veneto Italy Victoria British Columbia Canada Vienna Vienna Austria Washington D.C.District of Columbia United States
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值