JS 证明矩阵是否为 托普利兹矩阵 || 汉克尔矩阵

本文介绍了托普利兹矩阵和汉克尔矩阵的概念,并提供了JavaScript函数来验证一个矩阵是否符合这两种类型的特性。托普利兹矩阵主对角线及平行线上的元素相等,而汉克尔矩阵则是副对角线元素相等。通过示例展示了函数的正确性和应用。
摘要由CSDN通过智能技术生成

托普利兹矩阵,简称为T型矩阵,它是由Bryc、Dembo、Jiang于2006年提出的。托普利兹矩阵的主对角线上的元素相等,平行于主对角线的线上的元素也相等。

托普利兹矩阵

汉克尔矩阵 (Hankel Matrix) 是指每一条副对角线上的元素都相等的矩阵,在数字信号处理、数值计算、系统控制等领域均有广泛的应用。 

汉克尔矩阵

题目:1.证明一个矩阵为托普利兹矩阵。 2.证明一个矩阵为汉克尔矩阵。

// 托普利兹矩阵
function isToeplitzMatrix(matrix) {
    for(let y = 0; y < matrix.length; y++ ){
        for(let x = 0; x < matrix[y].length; x++){
            if(y === matrix.length - 1 || x === matrix[y].length - 1){
                continue;
            }
            if(matrix[y][x] !== matrix[y+1][x+1]){
                return false;
            }
        }
    }
    return true;
}

// 汉克尔矩阵
function isHankelMatrix(matrix) {
    for(let y = 0; y < matrix.length; y++ ){
        for(let x = matrix[y].length - 1; x >= 0; x--){
            if(y === matrix.length - 1 || x === 0){
                continue;
            }
            if(matrix[y][x] !== matrix[y+1][x-1]){
                return false;
            }
        }
    }
    return true;
}

例:

const matrix1 = [
    [1, 2, 3, 4],
    [5, 1, 2, 3],
    [0, 5, 1, 2],
    [9, 0, 5, 1]
];
isToeplitzMatrix(matrix1); // true


const matrix2 = [
    [1, 2, 3, 4],
    [5, 1, 2, 4],
    [0, 5, 1, 2],
    [9, 0, 5, 1]
];
isToeplitzMatrix(matrix2); // false

const matrix3 = [
    [1,   2,   3],
    [2,   3,   4],
    [3,   4, 4.5],
    [4, 4.5, 5.5]
];
isHankelMatrix(matrix2); // true
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值