深入解析:Peft Adapter与LLM融合

本文详细解读了如何将增量预训练阶段或有监督微调阶段产生的adapter文件与原始模型进行合并。通过代码分析,展示了模型合并的具体步骤,并提供了完整的代码示例。同时,文章提及了超参数设置、模型和分词器的加载与保存,以及运行结果。参考了相关的GitHub资源,供读者进一步研究。
摘要由CSDN通过智能技术生成

在增量预训练阶段或有监督微调阶段使用高效微调方法(Lora)时会产生adapter文件,相当于是一个“补丁”。那么如何将“补丁”与原始模型合并呢?

下面将对模型合并代码进行解读。

相关代码将全部上传到github:

https://github.com/hjandlm/LLM_Train

欢迎关注公众号

代码解读

  1. 导入包
import argparse
from loguru import logger

import torch
from peft import PeftModel, PeftConfig
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hj_caas

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值