Cell Reports|单细胞6张图,非肿瘤T细胞分型这样做

文章详细描述了银屑病关节炎(PsA)和类风湿关节炎(RA)中CD8+T细胞特别是CD69+CD103+TRM细胞的不同特征。发现PsA关节中有丰富的17型CD8+TRM细胞,这与RA中的免疫病理学差异有关。研究通过单细胞和高维度分析提供了新的见解。
摘要由CSDN通过智能技术生成

今天给大家分享一篇IF=8.8的单细胞的文章,2023年5月发表在Cell Reports:Psoriatic and rheumatoid arthritis joints differ in the composition of CD8+ tissue-resident memory T cell subsets,银屑病关节炎和类风湿关节炎的关节在CD8+组织驻留记忆T细胞亚群的组成上存在差异

摘要

CD69+CD103+组织驻留记忆T(TRM)细胞是炎症的重要驱动因素。为了解析它们在炎性关节炎中的作用,我们对银屑病性关节炎(PsA)或类风湿关节炎(RA)患者关节中的T细胞进行了单细胞、高维度分析。我们确定了三组滑膜CD8+CD69+CD103+ TRM细胞:细胞毒性和调节性T(Treg)-类TRM细胞存在于PsA和RA中,而具有促炎细胞因子特异性分泌(IL-17A+TNFα+IFNγ+)的CD161+CCR6+17型TRM细胞在PsA中特别丰富。相反,在两种疾病中仅检测到一种CD4+CD69+CD103+ TRM细胞群,且频率相似且较低。17型CD8+ TRM细胞具有独特的转录组特征和多克隆但不同的TCR重排。在PsA中,17型细胞还富集于CD8+CD103−T细胞中,与RA相比。这些发现说明了PsA和RA的免疫病理学差异,特别是在PsA关节中17型CD8+ T细胞的富集。

关键词:CD103、CD8+ T细胞、TRM、Tc17细胞、CyTOF、scRNA-seq、关节、滑膜液、银屑病性关节炎、类风湿关节炎

研究思路

结果


图1 鉴定出在银屑病性关节炎(PsA)和类风湿性关节炎(RA)患者中存在不同群体的滑膜CD8+CD69+CD103+和CD4+CD69+CD103+ TRM细胞

来自银屑病性关节炎(PsA)(n = 8)或类风湿性关节炎(RA)(n = 5)患者的滑膜液CD3+T细胞被染色以及带有面板I(无刺激); 活的CD8+和CD4+ T细胞被分门别类并独立分析; 显示了来自CD8+ T细胞(左列)和CD4+ T细胞(右列)的数据。

  • (A) PsA(红色)和RA(蓝色)样本的MDS图; 聚类基于所有标记中位数表达。

  • (B) 基于32个标记的arcsinh转换表达在总CD8+(左)和CD4+(右)T细胞中进行UMAP分析。从每个样本中,随机选择了60,000个细胞。UMAP显示了按疾病分层的CD69(左列)和CD103(右列)的细胞表达水平:PsA(顶行)和RA(底行)。细胞基于表面和细胞内标记进行聚类。

  • © 通过FlowSOM获得的15个群体的中位标记强度的热图。热图中的颜色和值表示了所有样本中的细胞上计算出的中位arcsinh转换,0-到1-缩放的标记表达; 通过平均连接的欧几里德距离计算得到的15个群体之间的层次相似性。沿着行和值的条形图显示了相对群体大小和ID。

  • (D) 如(B)中生成的UMAP分析,根据疾病分层并显示根据FlowSOM获得的15个群体的细胞着色,如(C)中所表征的; 红色圈出了TRM细胞群体。


图2 与RA患者相比,PsA患者中滑膜CD8+CD69+CD103+ TRM细胞的多个群体富集

  • (A 和 B) 累积数据显示来自图1C中的CD8+CD69+CD103+ (A) 和 CD4+CD69+CD103+ (B) TRM细胞群体的相对丰度,由CD69和CD103的共表达确定,分别在银屑病性关节炎(PsA)(红色)和类风湿性关节炎(RA)(蓝色)患者中; 箱线图显示中位数 ± 四分位距(IQR); PsA(n = 8)和RA(n = 5)的数据由广义线性混合模型(GLMMs)分析,报告p <0.05。

  • (C 和 D) 跨过32个标记的CD8+CD69+CD103+ TRM细胞群体(C)和1个CD4+CD69+CD103+ TRM细胞群体(D)的中位标记强度的热图。热图细节如图1所示。每个CD8+CD69+CD103+ TRM细胞群体(C)和CD4+CD69+CD103+ TRM细胞群体(D)都计算生成了MEM标签(方框),并且在每个群体内使用所有其他群体作为参考,标记被分配为正(向上箭头)或负(向下箭头)富集值。集群定义标记以粗体突出显示。


图3 滑膜CD8+CD69+CD103+ TRM细胞群体的细胞因子表达谱

滑膜液CD3+T细胞在存在GolgiStop的条件下与PMA/ionomycin刺激3小时,并使用面板II染色; 活的CD8+ T细胞被分门别类并分析。

  • (A) 基于在银屑病性关节炎(PsA)(n = 7)或类风湿性关节炎(RA)(n = 4)患者的总CD8+ T细胞中评估的33个标记的arcsinh转换表达进行的UMAP分析。从每个样本中随机选择了38,000个细胞。UMAP显示了按疾病分层的CD69(左列)和CD103(右列)的细胞表达水平:PsA(顶行)和RA(底行)。细胞基于表面和细胞内标记进行聚类。

  • (B) 跨过FlowSOM获得的15个细胞群体的中位标记强度的热图,如图1所示。

  • © 如(A)中生成的UMAP分析,根据疾病分层并显示根据FlowSOM获得的15个细胞群体的细胞着色,如(B)中所表征的; 红色圈出了TRM细胞群体。

  • (D) 来自(B)的CD8+CD69+CD103+ TRM细胞群体的相对丰度的累积数据,由CD69和CD103的共表达确定,分别在PsA(红色)和RA(蓝色)患者中。箱线图显示中位数 ± IQR; 数据由GLMMs分析,报告p <0.05。

  • (E) 跨过(B)获得的5个TRM细胞群体的中位标记强度的热图。如图2所述,为每个5个CD8+CD69+CD103+ TRM细胞群体列出的MEM标签(方框)。


图4 单细胞RNA测序分析定义了银屑病性关节炎患者滑膜液中TRM群体的独特特征

使用10×对银屑病性关节炎(PsA)患者(n = 4)的SFMC样本进行独立测序。

  • (A) UMAP显示PsA患者CD8+ T细胞中CD69(左)和CD103(右)的细胞蛋白(顶行)和基因(底行)表达水平。

  • (B) UMAP显示根据Seurat聚类获得的18个群体着色的细胞。

  • © 小提琴图显示Seurat群体中CD69(左)和CD103(右)的细胞蛋白(顶行)和基因(底行)表达水平。

  • (D) GSEA图,比较群体4(左)、6(中)和13(右)与所有其他群体的肺CD8+ TRM签名; 每组n = 4。显示了GSEA的归一化富集分数(NES)和多重检验调整的q值。

  • (E) 点图显示了通过CyTOF定义的特定TRM群体的蛋白或基因表达,在©中确定的3个CD69+CD103+群体中。点图热图显示了指定基因或蛋白的平均表达(颜色)和表达该基因或蛋白的细胞百分比(大小)。

  • (F) 显示与所有其他群体相比在群体4(左)或6(右)中显着差异表达的基因的火山图。使用Seurat中的FindMarkers函数进行Wilcoxon秩和检验计算差异表达的基因,并显示为蓝色(q < 0.05)或红色(q < 0.05,具有±1.2倍的变化)。

  • (G) 热图显示与群体4相比,群体6中前30个上调和下调基因(q < 0.05)的归一化平均表达。

  • (H 和 I) GSEA图比较PsA滑膜液(SF)CD8+HLA-DRhi签名(H)和与皮肤Tc17和皮肤CD8+CD49− TRM签名相比,群体6与群体4(I); 每组n = 4。


图5 银屑病性关节炎患者滑膜CD8+ T细胞中的有限克隆重叠

  • (A) 图4B中每个群体的反Pielou克隆性得分,每个供体(n = 4)包含> 100个TCR序列; 反Pielou分数从0到1,其中0表示高度多克隆群体,1表示单克隆群体; 箱线图显示中位数 ± IQR。

  • (B) 与其他群体(n = 4)相比,群体4(左)或6(右)的Morisita分数; 箱线图显示中位数 ± IQR; 为了比较分数,自由线条在分数为0.4处绘制。

  • © TRM群体谱和每个TRM群体与CD8+CD103− T细胞群体的Morisita分数比较(n = 4); 箱线图显示中位数 ± IQR。

  • (D) 代表性扇形图显示了在群体之间共享的前10个克隆的比例; 连接群体的扇形以共享克隆着色。


图6 银屑病性关节炎患者滑膜液中常规17型CD8+ T细胞的富集

  • (A 和 B) 累积数据显示与银屑病性关节炎(PsA)(n = 8,红色)或类风湿性关节炎(RA)(n = 5,蓝色)患者相比,来自图1C的CD8+(A)和CD4+(B)CD103− T细胞群体的相对丰度。箱线图显示中位数 ± IQR; 数据由GLMMs分析,报告p <0.05。

  • (C 和 D) 热图和MEM模型显示了来自(A 和 B)中显着富集(在PsA或RA中)的CD8+CD103−(C)或CD4+CD103−(D)细胞群体的32个标记的中位标记强度。热图和MEM细节如图1和2所述。

总结

  • 主要数据及方法:
TypesNotes
数据资源抗体“们”(列表参考原文);单细胞数据:8名PsA患者和5名RA患者
实验技术细胞分离;流式上样标准流程;
生信方法CyTOF数据分析;单细胞标准流程;GSEA富集;单细胞TCR流程
  • 这篇文章分析方法上并没有太大亮点,但能上cell reports也有其道理,就是PsA和RA的T细胞分型。笔者查了下,阵容强大,通讯作者Taams教授是在免疫学上专耕T细胞的大牛~
  • 该文章方法是传统方法,但是切入点十分值得大家学习和借鉴
Hugin是一种用于全景图拼接和切割的软件工具。如果我们将全景图切割成6张图,我们可以按照以下步骤进行操作。 首先,打开Hugin软件并导入全景图。这可以通过点击软件界面上的“导入图片”按钮来完成。选择要切割的全景图并点击“打开”。 接下来,在软件界面的右侧工具栏中找到“控制点”选项卡。点击“添加控制点”按钮并选择图像上的两个特征点,这些点需要在不同的图像中具有相同的位置。点击两个图像中相应的特征点来创建控制点。重复此步骤,直到您在所有需要切割的图像间创建了足够的控制点。 然后,点击软件界面右下方的“优化”按钮,以确保控制点的准确性。“优化”将自动调整控制点,使它们在整个全景图上匹配得更好。 接下来,回到软件界面左上方的“全景图”选项卡。您会看到一些选项,包括“输出”。点击“输出”选项卡,在“输出”选项卡中选择“多数图像”作为输出类型,并选择适当的文件路径和命名。 最后,再次回到软件界面右下方的控制栏,点击“渲染”按钮。Hugin将开始根据您的设置切割全景图。完成后,您可以在指定的文件路径中找到切割后的6张图像。 总之,使用Hugin软件,您可以轻松地将全景图切割成多张图像。通过创建控制点并进行优化,您可以确保切割图像之间的连贯性和准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bioinfo Guy

你的鼓励将是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值