主成分分析PCA

1、相关背景

在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律。多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的工作量。更重要的是在很多情形下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性。如果分别对每个指标进行分析,分析往往是孤立的,不能完全利用数据中的信息,因此盲目减少指标会损失很多有用的信息,从而产生错误的结论。

因此需要找到一种合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损失,以达到对所收集数据进行全面分析的目的。由于各变量之间存在一定的相关关系,因此可以考虑将关系紧密的变量变成尽可能少的新变量,使这些新变量是两两不相关的,那么就可以用较少的综合指标分别代表存在于各个变量中的各类信息。主成分分析与因子分析就属于这类降维算法。

二、为什么要进行数据降维

所谓降维,即用一组个数为 d 的向量 Z i Z_i Zi 来代表个数为 D 的向量 X i X_i Xi 所包含的有用信息,其中 d<D;通俗来讲,即将高维度下降至低维度;将高维数据下降为低维数据。

降维就是一种对高维度特征数据预处理方法。降维是将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。在实际的生产和应用中,降维在一定的信息损失范围内,可以为我们节省大量的时间和成本。降维也成为应用非常广泛的数据预处理方法。

通常,我们会发现大部分数据集的维度都会高达成百乃至上千,而经典的 MNIST,其维度都是 64。
在这里插入图片描述
MNIST 手写数字数据集
但在实际应用中,我们所用到的有用信息却并不需要那么高的维度,而且每增加一维所需的样本个数呈指数级增长,这可能会直接带来极大的「维数灾难」;而数据降维就可以实现:

降维具有如下一些优势:

  • 使得数据集更易使用
  • 降低算法的计算开销
  • 去除噪声
  • 使得结果容易理解

一旦我们能够正确处理这些信息,正确有效地进行降维,这将大大有助于减少计算量,进而提高机器运作效率。而数据降维,也常应用于文本处理、人脸识别、图片识别、自然语言处理等领域。
在这里插入图片描述

三、数据降维原理

往往高维空间的数据会出现分布稀疏的情况,所以在降维处理的过程中,我们通常会做一些数据删减,这些数据包括了冗余的数据、无效信息、重复表达内容等。

例如:现有一张 10241024 的图,除去中心 5050 的区域其它位置均为零值,这些为零的信息就可以归为无用信息;而对于对称图形而言,对称部分的信息则可以归为重复信息。

在这里插入图片描述
因此,大部分经典降维技术也是基于这一内容而展开,其中降维方法又分为线性和非线性降维,非线性降维又分为基于核函数和基于特征值的方法。

  • 线性降维方法

    PCA 、ICA LDA、LFA、LPP(LE 的线性表示)

  • 非线性降维方法

    基于核函数的非线性降维方法——KPCA 、KICA、KDA

    基于特征值的非线性降维方法(流型学习)——ISOMAP、LLE、LE、LPP、LTSA、MVU

四、PCA原理详解

4.1PCA的概念

PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相关的。其中,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第1,2个轴正交的平面中方差最大的。依次类推,可以得到n个这样的坐标轴。通过这种方式获得的新的坐标轴,我们发现,大部分方差都包含在前面k个坐标轴中,后面的坐标轴所含的方差几乎为0。于是,我们可以忽略余下的坐标轴,只保留前面k个含有绝大部分方差的坐标轴。事实上,这相当于只保留包含绝大部分方差的维度特征,而忽略包含方差几乎为0的特征维度,实现对数据特征的降维处理。

思考:我们如何得到这些包含最大差异性的主成分方向呢?

答案:事实上,通过计算数据矩阵的协方差矩阵,然后得到协方差矩阵的特征值特征向量,选择特征值最大(即方差最大)的k个特征所对应的特征向量组成的矩阵。这样就可以将数据矩阵转换到新的空间当中,实现数据特征的降维。

由于得到协方差矩阵的特征值特征向量有两种方法:特征值分解协方差矩阵、奇异值分解协方差矩阵,所以PCA算法有两种实现方法:基于特征值分解协方差矩阵实现PCA算法、基于SVD分解协方差矩阵实现PCA算法。

4.2 PCA原理

PCA 是一种基于从高维空间映射到低维空间的映射方法,也是最基础的无监督降维算法,其目标是向数据变化最大的方向投影,或者说向重构误差最小化的方向投影。它由 Karl Pearson 在 1901 年提出,属于线性降维方法。与 PCA 相关的原理通常被称为最大方差理论或最小误差理论。这两者目标一致,但过程侧重点则不同。

在这里插入图片描述

五、PCA算法两种实现方法

5.1基于特征值分解协方差矩阵PCA算法

输入:数据集 x = { x 1 , x 2 , . . . x n } x=\{{x_1,x_2,...x_n}\} x={x1,x2,...xn},需要降维到k维

  1. 去平均值(即去中心化),即每一位特征减去各自的平均值
  2. 计算协方差矩阵A= 1 / n ∗ x ∗ x T 1/n*x*x^T 1/nxxT,这里除或不除样本数量其实对求出的特征向量没有影响
  3. 用特征值分解方法求协方差矩阵A的特征值和特征向量
  4. 对特征值从大到小排序,选择其中最大的k个。然后将其对应的k个特征向量分别作为行向量组成特征向量矩阵P
  5. 将数据转换到k个特征向量构建的新空间中,即Y=PX。

举个列子
在这里插入图片描述

以X为例,我们用PCA方法将这两行数据降到一行。

  1. 因为X矩阵的每一行已经是0均值,所有不需要去除平均值
  2. 求协方差矩阵
    在这里插入图片描述
  3. 求协方差矩阵的特征值和特征向量
    求解后的特征值为:
    在这里插入图片描述
    对应的特征向量为:
    在这里插入图片描述
    其中对应的特征向量分别是一个通解, c 1 c_1 c1 c 2 c_2 c2可以取任意实数。那么标准化后的特征向量为:
    在这里插入图片描述
    在这里插入图片描述
  4. 矩阵P为:
    在这里插入图片描述
  5. 最后我们用最大特征值对应的特征向量乘数据矩阵X,得到降维后的表示:
    在这里插入图片描述
    在这里插入图片描述
    注意:如果我们通过特征值分解协方差矩阵,那么我们只能得到一个方向的PCA降维。这个方向就是对数据矩阵X从行(或列)方向上压缩降维。

5.2基于SVD分解协方差矩阵实现PCA算法(奇异值)

5.2.1 SVD分解矩阵原理

奇异值分解是一个能适用于任意矩阵的一种分解的方法,对于任意矩阵A总是存在一个奇异值分解:
在这里插入图片描述
假设A是一个 m ∗ n m*n mn的矩阵,那么得到的 U U U是一个 m ∗ m m*m mm的方阵, U U U里面的正交向量被称为左奇异向量。 Σ Σ Σ是一个 m ∗ n m*n mn的矩阵,Σ除了对角线其它元素都为0,对角线上的元素称为奇异值。 V T V^T VT是v的转置矩阵,是一个 n ∗ n n*n nn的矩阵,它里面的正交向量被称为右奇异值向量。而且一般来讲,我们会将Σ上的值按从大到小的顺序排列。

SVD分解矩阵A的步骤:

(1) 求 A A T AA^T AAT 的特征值和特征向量,用单位化的特征向量构成 U。

(2) 求 A T A A^TA ATA的特征值和特征向量,用单位化的特征向量构成 V。

(3) 将 A A T AA^T AAT或者 A T A A^TA ATA的特征值求平方根,然后构成 Σ。

输入:数据集 x = { x 1 , x 2 , . . x n } x=\{{x_1,x_2,..x_n}\} x={x1,x2,..xn},需要降维K维

  1. 去平均值,即每一位特征减去各自的平均值。
  2. 计算协方差矩阵。
  3. 通过SVD计算协方差矩阵的特征值与特征向量。
  4. 对特征值从大到小排序,选择其中最大的k个。然后将其对应的k个特征向量分别作为列向量组成特征向量矩阵。
  5. 将数据转换到k个特征向量构建的新空间中。

在PCA降维中,我们需要找到样本协方差矩阵 X X T XX^T XXT的最大k个特征向量,然后用这最大的k个特征向量组成的矩阵来做低维投影降维。可以看出,在这个过程中需要先求出协方差矩阵 X X T XX^T XXT,当样本数多、样本特征数也多的时候,这个计算还是很大的。当我们用到SVD分解协方差矩阵的时候,SVD有两个好处:

  1. 有一些SVD的实现算法可以先不求出协方差矩阵 X X T XX^T XXT 也能求出我们的右奇异矩阵V。也就是说,我们的PCA算法可以不用做特征分解而是通过SVD来完成,这个方法在样本量很大的时候很有效。实际上,scikit-learn的PCA算法的背后真正的实现就是用的SVD,而不是特征值分解。

2)注意到PCA仅仅使用了我们SVD的左奇异矩阵,没有使用到右奇异值矩阵,那么右奇异值矩阵有什么用呢?

假设我们的样本是 m ∗ n m*n mn的矩阵X,如果我们通过SVD找到了矩阵 X T X X^TX XTX最大的k个特征向量组成的 k ∗ n k*n kn的矩阵 V T V^T VT ,则我们可以做如下处理:
在这里插入图片描述
可以得到一个 m ∗ k m*k mk的矩阵X’,这个矩阵和我们原来m*n的矩阵X相比,列数从n减到了k,可见对列数进行了压缩。也就是说,左奇异矩阵可以用于对行数的压缩;右奇异矩阵可以用于对列(即特征维度)的压缩。这就是我们用SVD分解协方差矩阵实现PCA可以得到两个方向的PCA降维(即行和列两个方向)。

from __future__ import print_function
from sklearn import datasets
import matplotlib.pyplot as plt
import matplotlib.cm as cmx
import matplotlib.colors as colors
import numpy as np
%matplotlib inline

def shuffle_data(X, y, seed=None):
   if seed:
     np.random.seed(seed)

   idx = np.arange(X.shape[0])
   np.random.shuffle(idx)

   return X[idx], y[idx]

# 正规化数据集 X
def normalize(X, axis=-1, p=2):
   lp_norm = np.atleast_1d(np.linalg.norm(X, p, axis))
   lp_norm[lp_norm == 0] = 1
   return X / np.expand_dims(lp_norm, axis)
# 标准化数据集 X
def standardize(X):
   X_std = np.zeros(X.shape)
   mean = X.mean(axis=0)
   std = X.std(axis=0)

   # 做除法运算时请永远记住分母不能等于 0 的情形
   # X_std = (X - X.mean(axis=0)) / X.std(axis=0) 
   for col in range(np.shape(X)[1]):
     if std[col]:
       X_std[:, col] = (X_std[:, col] - mean[col]) / std[col]
   return X_std
# 划分数据集为训练集和测试集
def train_test_split(X, y, test_size=0.2, shuffle=True, seed=None):
   if shuffle:
     X, y = shuffle_data(X, y, seed)
   n_train_samples = int(X.shape[0] * (1-test_size))
   x_train, x_test = X[:n_train_samples], X[n_train_samples:]
   y_train, y_test = y[:n_train_samples], y[n_train_samples:]

   return x_train, x_test, y_train, y_test

# 计算矩阵 X 的协方差矩阵
def calculate_covariance_matrix(X, Y=np.empty((0,0))):
   if not Y.any():
      Y = X
   n_samples = np.shape(X)[0]
   covariance_matrix = (1 / (n_samples-1)) * (X - X.mean(axis=0)).T.dot(Y - Y.mean(axis=0))
   return np.array(covariance_matrix, dtype=float)
# 计算数据集 X 每列的方差
def calculate_variance(X):
   n_samples = np.shape(X)[0]
   variance = (1 / n_samples) * np.diag((X - X.mean(axis=0)).T.dot(X - X.mean(axis=0)))
   return variance
# 计算数据集 X 每列的标准差
def calculate_std_dev(X):
   std_dev = np.sqrt(calculate_variance(X))
   return std_dev

# 计算相关系数矩阵
def calculate_correlation_matrix(X, Y=np.empty([0])):
   # 先计算协方差矩阵
   covariance_matrix = calculate_covariance_matrix(X, Y)
   # 计算 X, Y 的标准差
   std_dev_X = np.expand_dims(calculate_std_dev(X), 1)
   std_dev_y = np.expand_dims(calculate_std_dev(Y), 1)
   correlation_matrix = np.divide(covariance_matrix, std_dev_X.dot(std_dev_y.T))

   return np.array(correlation_matrix, dtype=float)

class PCA():
   """
   主成份分析算法 PCA,非监督学习算法.
   """
   def __init__(self):
     self.eigen_values = None
     self.eigen_vectors = None
     self.k = 2

   def transform(self, X):
     """ 
     将原始数据集 X 通过 PCA 进行降维
     """
     covariance = calculate_covariance_matrix(X)

     # 求解特征值和特征向量
     self.eigen_values, self.eigen_vectors = np.linalg.eig(covariance)

     # 将特征值从大到小进行排序,注意特征向量是按列排的,即 self.eigen_vectors 第 k 列是 self.eigen_values 中第 k 个特征值对应的特征向量
     idx = self.eigen_values.argsort()[::-1]
     eigenvalues = self.eigen_values[idx][:self.k]
     eigenvectors = self.eigen_vectors[:, idx][:, :self.k]
     # 将原始数据集 X 映射到低维空间
     X_transformed = X.dot(eigenvectors)

     return X_transformed

def main():
   # Load the dataset
   data = datasets.load_iris()
   X = data.data
   y = data.target

   # 将数据集 X 映射到低维空间
   X_trans = PCA().transform(X)

   x1 = X_trans[:, 0]
   x2 = X_trans[:, 1]

   cmap = plt.get_cmap('viridis')
   colors = [cmap(i) for i in np.linspace(0, 1, len(np.unique(y)))]

   class_distr = []
   # Plot the different class distributions
   for i, l in enumerate(np.unique(y)):
       _x1 = x1[y == l]
       _x2 = x2[y == l]
       _y = y[y == l]
       class_distr.append(plt.scatter(_x1, _x2, color=colors[i]))

   # Add a legend
   plt.legend(class_distr, y, loc=1)

   # Axis labels
   plt.xlabel('Principal Component 1')
   plt.ylabel('Principal Component 2')
   plt.show()

if __name__ == "__main__":
   main()

最终,我们将得到降维结果如下。其中,如果得到当特征数 (D) 远大于样本数 (N) 时,可以使用一点小技巧实现 PCA 算法的复杂度转换。
在这里插入图片描述
PCA 降维算法展示
当然,这一算法虽然经典且较为常用,其不足之处也非常明显。它可以很好的解除线性相关,但是面对高阶相关性时,效果则较差;同时,PCA 实现的前提是假设数据各主特征是分布在正交方向上,因此对于在非正交方向上存在几个方差较大的方向,PCA 的效果也会大打折扣。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tc.小浩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值