编者按:
北京大学数据管理实验室薛冰聪硕士关于知识图谱质量控制的综述《Knowledge Graph Quality Management: a Comprehensive Survey》被 TKDE 2022 接收。
知识图谱以结构化的形式表示现实世界中的实体和关系,是人工智能技术发展的基石。随着DBpedia、YAGO等大规模图谱的构建和发布,知识图谱在信息检索、智能问答、推荐系统等任务中发挥着越来越重要的作用。但是,现有知识图谱普遍存在着质量问题,如不完整、不准确、不一致等。而另一方面,数据质量的研究有很长的发展历史,也催生了一系列工具和算法。近年来,越来越多的工作考虑到知识图谱质量问题,并提出了若干专用于知识图谱的质量控制方法。
这篇文章对知识图谱质量控制问题展开了广泛的综述,内容不仅包括质量控制的基本概念如问题、维度和指标,也涵盖了质量控制从评估、问题发现到质量提升的全流程,对不同工作中提出的方法,按照多个维度进行分类。在文章最后对现有工作进行讨论和总结,并提出了若干有潜力的未来发展方向。
论文地址:
https://ieeexplore.ieee.org/document/9709663
(或点击文末“阅读原文”跳转)
一、背景知识