TKDE2022 | 知识图谱质量控制综述

这篇综述探讨了知识图谱质量控制的重要性,涵盖评估、问题发现和质量提升的流程。文章指出,尽管数据质量和知识图谱质量控制有长期研究,但在大规模知识图谱中仍面临挑战。基于人工、统计学习和规则的方法被用来应对不完整、不准确和不一致的问题,同时混合方法展现出潜力。未来研究方向包括更多维度的质量控制、属性和字面值问题等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

编者按

北京大学数据管理实验室薛冰聪硕士关于知识图谱质量控制的综述Knowledge Graph Quality Management: a Comprehensive Survey》被 TKDE 2022 接收。

知识图谱以结构化的形式表示现实世界中的实体和关系,是人工智能技术发展的基石。随着DBpedia、YAGO等大规模图谱的构建和发布,知识图谱在信息检索、智能问答、推荐系统等任务中发挥着越来越重要的作用。但是,现有知识图谱普遍存在着质量问题,如不完整、不准确、不一致等。而另一方面,数据质量的研究有很长的发展历史,也催生了一系列工具和算法。近年来,越来越多的工作考虑到知识图谱质量问题,并提出了若干专用于知识图谱的质量控制方法。

这篇文章对知识图谱质量控制问题展开了广泛的综述,内容不仅包括质量控制的基本概念如问题、维度和指标,也涵盖了质量控制从评估、问题发现到质量提升的全流程,对不同工作中提出的方法,按照多个维度进行分类。在文章最后对现有工作进行讨论和总结,并提出了若干有潜力的未来发展方向。

论文地址:

https://ieeexplore.ieee.org/document/9709663

(或点击文末“阅读原文”跳转)

一、背景知识

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值