北京大学 李荆
编者按:
原文《Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey》介绍一篇关于动态图上的神经网络模型的综述,本篇综述的主要结构是根据动态图上进行表示学习过程的几个阶段(动态图表示、模型学习、模型预测)进行分别阐述。包括
1. 系统的探讨不同维度下的动态图分类方法以及各种方法下的数据表示格式
2. 针对不同类别的动态图归纳目前图表示学习的主流算法模型(encoding部分)
3. 分别讨论在预测阶段的主要方法,包括decoding, loss function, evaluation metrics等。
01
Dynamic networks
动态图的定义可以看作一个节点和边随着时间不断变化的图结构。在动态图的表示中,一个节点包括节点本身以及它生存的起始时间和结束时间,一条边也有端点u,v以及这条边的起始时间和结束时间。
目前关于图表示学习的研究中有很多的工作都聚焦在这种节点和边随时间变化的图结构上,但是在不同的论文中,所用的名词各有不同,比如dynamic networks, temporal networks, evolutionary networks, time-varying networks等等。为了对动态图有一个更加全面,规范的认识,首先探讨对于动态图的分类方法。
A. temporal granularity.
从对于动态性的粒度上来划分,我们可以将动态图划分为四类,static,edge weighted,discrete,continuous,他们的模型复杂程度依次增强,对于动态性的关注也依次增强。
对于static的网络,我们不关注图中的动态性信息,而将其作为一张静态图同等处理。
对于edge weighted networks,我们虽然也关注动态性,但图中的动态信息只是作为一张静态图中的节点或者边的labels而存在。
第三类离散型的动态图,是指以离散的时间片对图进行划分表示,动态图被看作不同时间段之间的多个静态图的集合。
这种表示的优点是能够有效的利用到目前静态图上的方法,分别对每个snapshot进行建模,之后再综合考虑不同snapshot之间的动态性。
第四类,连续型的动态图,它将图的变化看作不断发生的事件,是对动态性保留最多的,但同时也是最复杂的一类。举例来说有以下几种:
The event-based representation:
每个边包含了该事件的起始时间和持续时间。
The contact sequence representation:
是event-based的表示方法的一种特例和简化,当某些事件是瞬时发生的,或者说它们的持续时间不重要,比如邮件发送网络等,此时我们可以省略掉事件的持续时间表示。
The graph stream representation:
在这种表示中将边的产生和消失分别看作不同的事件,用第四位的-1(删除边)和1(插入边)的标志位表示。
B. link duration
根据边的持续时间长短