pytorch源码解析系列-yolov4最核心技巧代码详解(5)- 其他tricks-CBN,SAT等

19 篇文章 0 订阅
13 篇文章 0 订阅
本文介绍了深度学习中两种优化技术——CBN(Cross-iteration BatchNorm)和DropBlock,并探讨了它们在小批量数据上的应用。CBN通过结合历史批次信息改善BN效果,而DropBlock是一种阻止特征聚集的正则化方法,提升模型泛化能力。虽然源码未找到,但理解这些概念对于优化模型性能至关重要。
摘要由CSDN通过智能技术生成

yolov4的pytorch源码我没有找到上述tricks的对应code
只能去搜罗相似的代码了,yolo5如果有源码的话我今后会补充进来
我觉得贴源码没什么意思,我就大白话说下这个是干啥的,有兴趣自己看下我贴的源码就好

CBN

CBN就是所谓的Cross-iterationBatchNorm
CBN
就是batchNorm是对一批batch数据做归一化的,如果batch很小(比如目标检测任务中,图片太大加上GPU的限制,一般batch都设定的很小),BN的效果就不太好
针对这个问题,提出的解决方案,就是每次算BN的时候参考前面的BN
在这里插入图片描述
怎么样 是不是来感觉了?
类似指数加权的方式白用不烂,当然这个和nn.Batchnorm2D中的动量参数还是有点区别的
具体实现可以看下原论文和代码,涉及到泰勒展开等内容
像我们这种不是搞学术,只搞落地的可以忽略了,因为真正好用的东西pytorch都会给我们加进去的

DropBlock

yolo版没找到,后续v5再补吧

自对抗训练SAT

yolo版没找到,后续v5再补吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>