数据长度不一致
用pytorch做rnn的时候,如果输入数据不一样长,可以用两种方式解决。
一种是自定义collate方法,
#自定义collate_fn
dataloader.DataLoader(dataset,4,True,collate_fn=my_collate)
然后里面写数据和标签载入方式即可
def my_collate(batch):
data = [item[0] for item in batch]
target = [item[1] for item in batch]
return [data, target]
第二种方式使用
压缩:nn.utils.rnn.pack_padded_sequence
解压是 这个pad_packed_sequence
核心思想是对padding补充过的数据进行压缩,这种方式可以加速运算在大数据集中效果较好
(原理是把数据中为0的padding给压缩掉,进入RNN计算的时候直接跳过输出0)
当你拿到长短不一致的数据的时候
第一步自然是PADDING,无论什么框架都一样,自己手写一个就行了
def custompad(X,max_len=10):
X = torch.Tensor(X)
m=X.shape[0]
pad = torch.zeros(<
PyTorch DataLoader处理不规则序列数据

在使用PyTorch进行LSTM等RNN计算时,遇到输入数据长度不一致的问题,可以通过自定义`collate_fn`或者利用`nn.utils.rnn.pack_padded_sequence`和`nn.utils.rnn.pad_packed_sequence`进行处理。自定义`collate_fn`用于加载数据和标签,而`pack_padded_sequence`则能加速运算,通过压缩填充后的数据,跳过RNN中的无效0值。解压缩后,可以通过序列长度获取最后一层的计算结果。
最低0.47元/天 解锁文章
8673

被折叠的 条评论
为什么被折叠?



