MimicMotion:利用置信度感知姿势引导生成高质量人体运动视频

近年来,生成式人工智能在图像生成领域取得了重大进展,催生了各种各样的应用。然而,视频生成在可控性、视频时长、细节丰富等各个方面仍面临相当大的挑战,阻碍了该技术的应用和普及。在这项工作中,我们提出了一种可控的视频生成框架,称为MimicMotion,该框架可以在任何运动引导下生成任意长度的高质量视频。与以往的方法相比,我们的方法有几个亮点。首先,通过置信度感知姿势引导,可以实现时间平滑度,从而可以利用大规模训练数据增强模型的鲁棒性。其次,基于姿态置信度的区域损失放大方法显著缓解了图像的畸变。最后,针对长视频的生成问题,提出了一种渐进潜融合策略。通过这种方式,可以在可接受的资源消耗下生成任意长度的视频。通过广泛的实验和用户研究,MimicMotion在多个方面比以前的方法有了显着的改进。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值