缩聚和逐步聚合
这几次课学习了缩聚和逐步聚合,写下一点想法,用于借鉴。
缩合在什么条件下才可以形成大分子呢?
一般而言,需要 f ≥ 2 f\geq2 f≥2才可以形成大分子物质, f < 2 f<2 f<2则只能形成小分子物质。
大分子结构可以分为线形结构和非线形结构(体型结构,支链型结构……)
† \dag † 首先来说说线形结构
线形聚合物会有很多副反应
- 成环反应(一般而言,五六元环比较稳定,成内酯;也可能是脱水成丙烯酸)
- 消去反应(二元酸受热脱羧等)
- 链交换(链的结构发生变化)
- 化学降解(逆反应水解这类也是化学降解)
线形聚合物最重要的就是控制聚合度,能够控制聚合度的方法有:“封端,将某一成分微过量,引入单官能团物质……”,从这里可以看出基团数比对于聚合度的影响是十分重要的。
⋆ \star ⋆ 从机理上来说,可以分为:逐步反应,可逆平衡 两项。
- 逐步反应
需要引入一个反应程度 p p p 的概念:定义为参与反应的基团数 ( N 0 − N ) (N_0-N) (N0−N)占起始基团数 N 0 N_0 N0的分数 p = N 0 − N N 0 = 1 − N N 0 p=\frac{N_0-N}{N_0}=1-\frac{N}{N_0} p=N0N0−N=1−N0N 如果将大分子的聚合度用结构单元 X n ‾ \overline{X_n} Xn表示,则 X n ‾ = N 0 N \overline{X_n}=\frac{N_0}{N} Xn=NN0 X n ‾ = 1 1 − p \overline{X_n}=\frac{1}{1-p} Xn=1−p1
需要注意,该式子只适用于线形聚合,基团等当量的时候才能够使用
- 可逆平衡
正反应是酯化,逆反应是水解
K>1000时,一般认为反应不可逆。
⋆ \star ⋆ 从动力学角度 【这里的公式要记的非常多】
-
我们知道,反应分为可逆反应和不平衡反应,因此就应该有可逆线形缩聚动力学和不可逆线形缩聚动力学。
-
酯化反应中是含有羧酸的,我们也应该分为外加酸催化和自催化的反应,自催化的反应中,根据酸能不能电离,应该分为部分电离和不电离。 而电不电离只会影响到可逆反应的平衡。
-
可逆平衡中有个非常重要的点就是小分子,通常我们说小分子是水(当然也有如HCl这类小分子),能不能及时排出小分子物质至关重要。
-
这也将分为两种情况讨论:一、封闭体系,不排出任何物质;二、部分排出水。我们的反应速率 R = − d c d t R=-\frac{dc}{dt} R=−dtdc,分为两种情况:(假设初始浓度为 c 0 c_0 c0) ( c = c 0 ( 1 − p ) c=c_0(1-p) c=c0(1−p))
- 封闭体系 − d c d t = c 0 d p d t = k 1 c 0 [ ( 1 − p ) 2 − p 2 K ] -\frac{dc}{dt}=c_0\frac{dp}{dt}=k_1c_0[(1-p)^2-\frac{p^2}{K}] −dtdc=c0dtdp=k1c0[(1−p)2−Kp2]
- 水部分排出
−
d
c
d
t
=
c
0
d
p
d
t
=
k
1
[
c
0
(
1
−
p
)
2
−
n
w
p
K
]
-\frac{dc}{dt}=c_0\frac{dp}{dt}=k_1[c_0(1-p)^2-\frac{n_wp}{K}]
−dtdc=c0dtdp=k1[c0(1−p)2−Knwp]
这两个公式对于后面的聚合度的推导有重要用途!!
接着说说聚合度这个重要的东西
反应程度肯定跟聚合度是有关系的。上面也有提到,基团数比也对聚合度有所影响。
先来讨论一下反应程度的影响
假设官能团等当量:
- 封闭系统 ( 1 − p ) 2 − p 2 K = 0 (1-p)^2-\frac{p^2}{K}=0 (1−p)2−Kp2=0 X n ‾ = 1 1 − p = K + 1 \overline{X_n}=\frac{1}{1-p}=\sqrt{K}+1 Xn=1−p1=K+1
- 高度减压条件下,排出副产物水 c 0 ( 1 − p ) 2 − n w p K c_0(1-p)^2-\frac{n_wp}{K} c0(1−p)2−Knwp X n ‾ = 1 1 − p = c 0 K p n w ≈ K n w \overline{X_n}=\frac{1}{1-p}=\sqrt{\frac{c_0K}{pn_w}}≈\sqrt{\frac{K}{n_w}} Xn=1−p1=pnwc0K≈nwK
平衡常数很小,需要在高度减压下,充分脱除水分,聚合后期,粘度增大,水扩散困难,要求设备操作表面更新,创造较大的扩散界面。
平衡常数较大,可以在稍低的减压下,允许稍高的残留水分。
平衡常数很大,对聚合度要求不高的体系(如可溶性酚醛树脂),完全可以在水中进行。
基团数比的影响
有两个符号需要知道:基团数比 r (理论分析多用) ,过量分率 q (工业生产多用)
r
=
1
q
+
1
r=\frac{1}{q+1}
r=q+11
使两基团数相等的方法措施有3:①单体纯度高,精确计量。 ②2-官能度体系(两个基团在同一单体分子上) ③二元胺二元酸成盐。 在此基础上使某一单体微过量或加入少量单官能团物质,来封锁端基。
-
基团数不等
X n ‾ = 1 + r 1 + r − 2 r p \overline{X_n}=\frac{1+r}{1+r-2rp} Xn=1+r−2rp1+r -
基团数相等
这里的基团数比要改变为:
r = N a N b + 2 N b ′ r=\frac{N_a}{N_b+2N_b'} r=Nb+2Nb′Na为什么这里要用 2 N b 2N_b 2Nb呢?
因为多加入的单官能团物质在端位,作用跟端位2官能团的分子作用是一样的,相当于多引入的2官能团分子。
然后带入等当量的那个式子可以算得聚合度。
聚合度的分布函数
Flory运用统计学方法归纳出来的。怎么推导出来的自己去看书,这里只讲我心里的第一想法。
这里比较重要的是聚合度的分布指数。分为数均聚合度
X
n
‾
=
∑
x
N
x
∑
N
x
=
1
1
−
p
\overline{X_n}=\frac{\sum xN_x}{\sum N_x}=\frac{1}{1-p}
Xn=∑Nx∑xNx=1−p1和重均聚合度
X
w
‾
=
∑
x
W
x
W
=
1
+
p
1
−
p
\overline{X_w}=\sum x\frac{W_x}{W}=\frac{1+p}{1-p}
Xw=∑xWWx=1−p1+p,以及这两者之间的关系
X
w
‾
X
n
‾
=
1
+
p
≈
2
\frac{\overline{X_w}}{\overline{X_n}}=1+p≈2
XnXw=1+p≈2
“但是我个人感觉这里对于本科课内考试不太重要。”
凝胶度的预测
凝胶点是什么?
凝胶点定义为,开始出现凝胶瞬间的临界反应程度 p c p_c pc。
凝胶点后交联继续。
热固性材料制备过程分为两个阶段:1、预聚物的制备 2、成型固化。预聚物可以分为无规预聚物和结构预聚物。
凝胶度的测定方面,有两位非常重要的两位大师:Carothers和Flory
其中carothers法需要引入:平均聚合度的概念; flory法需要引入:临界支化系数和支化单元分率。
Carothers 法
(1) 两基团数相等
平均聚合度 f − = ∑ N i ∑ N i f i \overset{-}{f}=\overset{\sum N_if_i}{\sum N_i} f−=∑Ni∑Nifi
反应程度 p = 2 f ‾ ( 1 − 1 X n ‾ ) p=\frac{2}{\overline{f}}(1-\frac{1}{\overline{X_n}}) p=f2(1−Xn1)
凝胶点时,考虑聚合度、分子量无限大, p c = 2 f ‾ p_c=\frac{2}{\overline{f}} pc=f2
(2)两基团数不等
这里又要分为两种:①双组分 ②多组分。但是我只想提双组分的,以此来举例说明。
双组分中,必有一个单体分子过量,那么平均聚合度为多少应该由少的那个决定
f ‾ = 2 N A f A N A + N B \overline{f}=\frac{2N_Af_A}{N_A+N_B} f=NA+NB2NAfA
看到Carothers 法预测凝胶点时要注意,第一想法就是判断哪一种官能团更多,然后再考虑平均聚合度为多少,最后套用公式,不能只记住凝胶点的公式,反应程度的也应该记住。
Flory法
flory法要判断多官能团单体是否存在,有多少个,这种支化单元占比多少,基团数比为多少。
临界支化系数 a c = 1 f − 1 a_c=\frac{1}{f-1} ac=f−11
令
p
A
p_A
pA和
p
B
p_B
pB
分别为基团的反应程度,
ρ
\rho
ρ为支化单元分率(支化单元中A占全部A的分率)。
(
p
A
)
c
=
1
r
+
r
ρ
(
f
−
2
)
(p_A)_c=\frac{1}{r+r\rho(f-2)}
(pA)c=r+rρ(f−2)1
这里是以
p
A
p_A
pA来计算凝胶点的,要注意看,A是有支化单元的那个,因此,f就应该是支化单元的官能度。
用flory法预测凝胶点,首先应该判断支化单元的官能度为多少,细心求得基团数比,最后得出答案。