物化公式整理(1)

公式总结

物理量公式条件备注
W W W δ W = d e f − p e x d V \delta W\overset{def}{=}-p_{ex}dV δW=defpexdV定义式
n R T l n V 1 V 2 nRTln\frac{V_1}{V_2} nRTlnV2V1用系统压力代替外压
U U U
U是状态函数
Δ U = Q + W \Delta U=Q+W ΔU=Q+W热力学第一定律表达式,任何情况都可以用
Q V = Δ U = ∫ T 1 T 2 C V ( T ) d T Q_V=\Delta U=\int_{T_1}^{T_2}C_V(T)dT QV=ΔU=T1T2CV(T)dT等容变温热力学能是温度的单值函数,只与温度有关;
d U = T d S − p d V dU=TdS-pdV dU=TdSpdV封闭系统,只做体积功,可逆过程热力学基本方程
Q Q Q只与热量有关,绝热过程Q=0
H H H
H是状态函数
H = d e f U + p V H\overset{def}{=}U+pV H=defU+pV注意这里的pV并不是体积功
Δ H = Q p = ∫ T 1 T 2 C p ( T ) d T \Delta H=Q_p=\int_{T_1}^{T_2}C_p(T)dT ΔH=Qp=T1T2Cp(T)dT等压变温条件焓是温度的单值函数,只与温度有关
d H = T d S + V d p dH=TdS+Vdp dH=TdS+Vdp封闭系统,只做体积功,可逆过程热力学函数基本方程
C C C C V = Δ Q v d T = ( ∂ U ∂ T ) V C_V=\frac{\Delta Q_v}{dT}=(\frac{∂U}{∂T})_V CV=dTΔQv=(TU)V

C p = δ Q p d T = ( ∂ H ∂ T ) p C_p=\frac{\delta Q_p}{dT}=(\frac{∂H}{∂T})_p Cp=dTδQp=(TH)p
热容注意和R的关系就行
ξ ξ ξ d n B / v B = d e f d ξ dn_B/v_B \overset{def}{=}dξ dnB/vB=defdξ反应进度,其中 v v v是化学计量系数,生成物取+,反应物取-
克劳修斯不等式 ∮ δ Q T ≤ 0 \oint \frac{\delta Q}{T}\leq0 TδQ0
S S S
S是状态函数
d S ≥ δ Q T dS\geq\frac{\delta Q}{T} dSTδQ封闭系统热力学第二定律的数学表达式 ;
1. 熵是系统的状态函数
2. 熵是广度性质
3. 对于任意过程的熵变,可设想一个始终态相同的可逆变化过程
要判断这个过程可不可以进行,要计算环境和系统的熵变
d S = δ Q r T = p d V T = 积 分 得 n R l n p 1 p 2 dS=\frac{\delta Q_r}{T}=\frac{pdV}{T}\overset{积分得}{=}nRln\frac{p_1}{p_2} dS=TδQr=TpdV=nRlnp2p1等温过程
Δ S = C p l n T 2 T 1 \Delta S=C_p ln\frac{T_2}{T_1} ΔS=CplnT1T2

Δ S = C V l n T 2 T 1 \Delta S=C_Vln\frac{T_2}{T_1} ΔS=CVlnT1T2
等压或等容变温过程
Δ S = Δ H T \Delta S=\frac{\Delta H}{T} ΔS=TΔH等温等压下的可逆相变过程△H是可逆相变焓;
若为不可逆相变需要在设计一条始末状态相同的路径
S m ∗ S_m^* Sm l i m T → 0 K S m ∗ ( 完 美 晶 体 ) = 0 lim_{T→0K}S_m^*(完美晶体)=0 limT0KSm()=00K时,纯物质完美晶体的熵值等于0能斯特热定理;
热力学第三定律数学表达式
A A A
A是状态函数
A = d e f U − T S A\overset{def}{=}U-TS A=defUTS
− d A ≤ − δ W -dA\leq-\delta W dAδW
等温可逆过程亥姆霍兹函数
( d A ) T , V , W ′ = 0 ≤ 0 (dA)_{T,V,W'=0}\leq0 (dA)T,V,W=00 < 自 发 ; = 平 衡 <自发 ;=平衡 <=
等温等容 不做非体积功
"等温等容 不做非体积功"条件下才可使用该判据
d A = W = n R T l n p 2 p 1 dA=W=nRTln\frac{p_2}{p_1} dA=W=nRTlnp1p2等温条件下,系统只做体积功在这个条件下 Δ A = Δ G \Delta A=\Delta G ΔA=ΔG
d A = − S d T − p d V dA=-SdT-pdV dA=SdTpdV封闭系统,只做体积功,可逆过程热力学函数基本方程
G G G
G是状态函数
G = d e f H − T S G\overset{def}{=}H-TS G=defHTS吉布斯函数
d G ≤ δ W ′ dG\leq \delta W' dGδW等温等压下可逆过程等温等压下的可逆过程中做的非体积功在数值上等于系统吉布斯函数的减少
( d G ) T , p , W ′ = 0 ≤ 0 (dG)_{T,p,W'=0}\leq0 (dG)T,p,W=00 < 自 发 ; = 平 衡 <自发 ; =平衡 <=
等温等压下,不做非体积功
Δ G = n R T l n p 2 p 1 \Delta G=nRTln\frac{p_2}{p_1} ΔG=nRTlnp1p2 Δ A = Δ G \Delta A=\Delta G ΔA=ΔG
Δ G = 0 \Delta G=0 ΔG=0相变化过程中,一般是等温等压过程,平衡状态下,过程是可逆的若不可逆,则需要另设计一条与不可逆过程始终态相同的可逆路径
G m ( T ) = G m θ ( T ) + R T l n ( p / p θ ) G_m(T)=G_m^\theta(T)+RTln(p/p^\theta) Gm(T)=Gmθ(T)+RTln(p/pθ)理想气体等温下的吉布斯函数
d G = − S d T + V d p dG=-SdT+Vdp dG=SdT+Vdp封闭系统,只做体积功,可逆过程热力学函数基本方程
μ B \mu_B μB μ B = d e f ( ∂ G ∂ n B ) T , p , n C ( C ≠ B ) \mu _B\overset{def}{=}(\frac{∂G}{∂n_B})_{T,p,n_C(C≠B)} μB=def(nBG)T,p,nC(C=B)化学势
μ = G m ∗ \mu =G^*_m μ=Gm纯物质的化学势
d G = ∑ B μ B d n B dG=\sum_B \mu_Bdn_B dG=BμBdnB等温等压,无其他功过程自发与平衡的化学势判据
μ = μ θ ( T ) + R T l n ( p / p θ ) \mu=\mu^\theta(T)+RTln(p/p^\theta) μ=μθ(T)+RTln(p/pθ)

热力学函数基本关系式

U = U ( S , V ) H = ( S , p ) A = A ( T , V ) G = G ( T , p ) U=U(S,V)\quad H=(S,p) \quad A=A(T,V)\quad G=G(T,p) U=U(S,V)H=(S,p)A=A(T,V)G=G(T,p)

[1]朱海梅,张筱宜,桂琳,吴建辉.20个热力学函数关系式的“双正方形+五规则”记忆法[J].医学教育管理,2016,2(05):676-681.

另外推荐阅读以下 文献 帮助记忆该公式:

参考文献

[1]朱海梅,张筱宜,桂琳,吴建辉.20个热力学函数关系式的“双正方形+五规则”记忆法[J].医学教育管理,2016,2(05):676-681.
[2]李新华.热力学函数之间关系式的简单记忆法[J].渤海大学学报(自然科学版),2012,33(02):149-151.

<think>好的,用户想准备SQL优化相关的面试问题和答案。我需要整理常见的面试问题,并提供简明扼要的解答,同时参考提供的引用内容,确保信息准确。首先,用户提供的引用中有提到索引使用、执行计划分析、物化视图、分区策略等,这些都是SQL优化的关键点。 首先,要列出高频问题。比如如何定位性能问题、索引优化、执行计划分析、避免全表扫描、JOIN优化等。然后,结合引用中的信息,比如引用1提到如何知道索引是否被使用,引用3讨论了物化视图的作用,引用2提到分区策略和Catalyst优化器。 接下来,每个问题需要给出清晰的回答步骤,例如定位性能问题时,可以分步骤说明使用执行计划、监控工具、日志分析等方法。索引优化部分要强调避免过多索引,选择区分度高的列,以及覆盖索引的使用。 还要注意物化视图的应用场景,如预先计算聚合数据,定时刷新策略,以及Oracle的查询重写功能。分区策略方面,可以按时间或范围分区,提升查询效率和管理效率。 需要确保回答结构清晰,每个问题先简要回答,再分点详细说明,并自然地添加引用标识。同时,生成的相关问题要覆盖不同方面,比如执行计划工具、索引失效情况、分区类型选择等,帮助用户全面准备。 最后检查是否符合格式要求:行内公式用$...$,独立公式用$$...$$,中文回答,引用标识正确,代码块语法正确,以及相关问题部分合理。确保内容真实可靠,覆盖用户需求。</think>### SQL性能优化面试常见问题及解答 --- #### **1. 如何定位SQL语句的性能问题?** **回答:** - **步骤1:使用执行计划(EXPLAIN PLAN)** 通过`EXPLAIN PLAN`分析查询的执行路径,确认是否使用索引、是否全表扫描等。例如: ```sql EXPLAIN PLAN FOR SELECT * FROM employees WHERE department_id = 10; SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY); ``` - **步骤2:监控SQL执行时间与资源消耗** 使用数据库监控工具(如Oracle的AWR报告、MySQL的慢查询日志)记录高耗时的SQL语句[^1]。 - **步骤3:检查索引利用率** 确认查询是否命中索引(例如通过`INDEX_STATS`视图或动态性能视图)。 --- #### **2. 如何优化索引以提高查询性能?** **回答:** - **原则1:选择性高的列优先建索引** 例如,对唯一值比例高的列(如用户ID)创建索引,避免对性别等低区分度列建索引。 - **原则2:避免过多索引** 索引会增加写操作开销,需权衡读写频率。 - **原则3:使用覆盖索引** 若索引包含所有查询字段,可避免回表操作。例如: ```sql -- 创建覆盖索引 CREATE INDEX idx_covering ON orders (customer_id, order_date, total_amount); ``` --- #### **3. 如何避免全表扫描?** **回答:** - **方法1:优化WHERE条件** 确保WHERE条件中的列有索引,并避免对索引列使用函数或运算。例如: ❌ `WHERE YEAR(order_date) = 2023` → ✅ `WHERE order_date BETWEEN '2023-01-01' AND '2023-12-31'` - **方法2:使用分区表** 按时间或范围分区,缩小数据扫描范围。例如: ```sql CREATE TABLE sales PARTITION BY RANGE (sale_date) (...); ``` 分区策略可显著提升查询效率[^2]。 --- #### **4. 如何优化JOIN操作的性能?** **回答:** - **策略1:选择合适的JOIN类型** - **小表驱动大表**:优先使用INNER JOIN而非CROSS JOIN。 - **利用索引**:确保JOIN字段(如`ON a.id = b.id`)有索引。 - **策略2:减少数据集大小** 在JOIN前使用子查询或临时表过滤冗余数据。例如: ```sql SELECT a.*, b.name FROM (SELECT * FROM orders WHERE status = 'completed') a JOIN customers b ON a.customer_id = b.id; ``` 此方法可减少JOIN时的数据量[^2]。 --- #### **5. 物化视图如何提升性能?** **回答:** - **作用1:预计算聚合数据** 物化视图可存储复杂查询(如SUM/COUNT)的结果,避免实时计算。例如: ```sql CREATE MATERIALIZED VIEW mv_sales_summary AS SELECT product_id, SUM(quantity) FROM sales GROUP BY product_id; ``` - **作用2:查询重写优化** Oracle优化器会自动将查询重写为使用物化视图(需启用`QUERY_REWRITE`)[^3]。 - **刷新策略**:根据业务需求选择定时刷新(如每天)或增量刷新。 --- #### **6. 如何优化分页查询?** **回答:** - **方法1:使用游标分页(Keyset Pagination)** 避免`OFFSET`导致的性能问题,改用WHERE条件过滤。例如: ```sql -- 传统分页(低效) SELECT * FROM orders ORDER BY id LIMIT 10 OFFSET 100; -- 游标分页(高效) SELECT * FROM orders WHERE id > 100 ORDER BY id LIMIT 10; ``` - **方法2:优化索引** 确保排序字段(如`ORDER BY`)有索引支持。 ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值