“问渠那得清如许,为有源头活水来”,通过前沿领域知识的学习,从其他研究领域得到启发,对研究问题的本质有更清晰的认识和理解,是自我提高的不竭源泉。为此,我们特别精选论文阅读笔记,开辟“源头活水”专栏,帮助你广泛而深入的阅读科研文献,敬请关注!
Volume 46, Number 1, January 2024,46卷第一期,第二部分11-20
时序建模、连续流形学习、对称正定矩阵
11. S. Jeong, W. Ko, A. W. Mulyadi and H. -I. Suk, "Deep Efficient Continuous Manifold Learning for Time Series Modeling," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, no. 1, pp. 171-184, Jan. 2024,
doi: 10.1109/TPAMI.2023.3320125.
关键词:时序建模、连续流形学习、对称正定矩阵
随着深度神经网络在不同领域取得前所未有的成功,非欧几里得数据建模正引起广泛关注。特别是对称正定矩阵,由于其学习有益统计表征的能力,在计算机视觉、信号处理和医学图像分析领域正被积极研究。然而,由于对称正定矩阵具有刚性约束,它仍然对优化问题和低效计算成本具有挑战性,尤其是在将其与深度学习框架相结合时。在本文中,我们提出了一种利用黎曼流形和乔尔斯基空间之间的差分映射的框架,通过这种框架,不仅可以高效地解决优化问题,还能大大降低计算成本。此外,针对时间序列数据的动态建模,我们通过系统整合流形常微分方程和门控递归神经网络,设计了一种连续流形学习方法。值得注意的是,由于矩阵在 Cholesky 空间中的良好参数化,我们提出的配备黎曼几何度量的网络训练非常简单。我们通过对规则和不规则时间序列数据集的实验证明,我们提出的模型可以得到高效可靠的训练,并且在各种时间序列任务中优于现有的流形方法和最先进的方法。
下图为系统架构图:
场景流综述、2D图像到3D点云
12. X. Xiang, R. Abdein, W. Li and A. E. Saddik, "Deep Scene Flow Learning: From 2D Images to 3D Point Clouds," in IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 46, no. 1, pp. 185-208, Jan. 2024,
doi: 10.1109/TPAMI.2023.3319448.
关键词:场景流综述、2D图像到3D点云
场景流(Scene Flow)描述了场景中的三维运动。它可以被建模为一个单独的任务,也可以被建模为深度、摄像机运动和光流估计等辅助任务的综合体。近年来,深度学习的兴起拓宽了估计这些任务的新方法的视野,既可以将其作为单独任务,也可以将其作为联合任务来重建场景流。这些方法的输入是由相机合成或捕捉的图像序列,这些方法面临的挑战是如何处理图像中的各种情况,以提供最精确的运动,例如图像质量。如今,点云已经取代了图像,点云提供了三维信息,从而加快并增强了运动估计的速度。在本文中,我们将深入探讨深度学习时代的场景流估计。我们全面概述了基于图像和基于点云的方法的重要进展。此外,我们还介绍了每个类别的方法,重点介绍了网络架构的发展。此外,我们还对这些方法的性能和效率进行了比较。最后,我们还讨论了未解决的问题和未来研究方向。
下图为系统架构图:
少样本学习、自监督学习、快