Glesjer检验与Park检验并用WLS修正异方差

本文介绍了在R语言中如何进行异方差性检验,包括Glejser检验和White检验,并展示了如何使用加权最小二乘法(WLS)修正模型。通过散点图和残差图分析,确定了模型存在异方差性,并进行了相应的统计检验。最终,使用WLS得到了更可靠的参数估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

异方差练习

模型初步估计
我们首先通过散点图(如下所示)可以看出可支配收入与消费支出之间有一定的正相关,当可支配收入少的时候,消费支出也会相对减小。当个人可支配收入多的时候,消费支出也会相对增加。

Alt

mydata <- read.table("clipboard",header = T)
plot(mydata$X,mydata$Y,xlab = "个人可支配收入",ylab="消费支出")

用R拟合后,发现个人可支配收入对于消费支出的影响是比较显著的。拟合值是0.6334.拟合效果还可以。拟合的效果图如下:

在这里插入图片描述

fit <- lm(Y~X,data = mydata)
s <- fitted(fit)
lines(mydata$X,s,col="red")

**

异方差的检验

**

  • 图示法

图示法描述
是一种直观的判断,利用OLS估计所得到的残差值与随机扰动项方差有关的自变量作图。常见的做法就是采用残差平方对因变量Y或者自变量X做二维图初步判断是否存在异方差,以及异方差的存在的形式。可以在下图明显看到:自变量小的时候残差平方也比较小,自变量大的时候,残差平方也比较大。 ε i ^ 2 \hat{\varepsilon_i}^{2} εi^2的取值范围的扩大与缩小是异方差可能存在的一个信号。
在这里插入图片描述

  • Glejser检验

    设线性模型是: Y i {Y_i} Yi = β 0 {\beta_0} β0 + β 1 X i 1 {\beta_1X_{i1}} β1Xi1 + β 2 X i 2 {\beta_2X_{i2}} β2Xi2 + … + β k X i k {\beta_kX_{ik}} βkXik + ε i {\varepsilon_i} εi , i {i} i = 1 , 2... n {1,2...n} 1,2...n
    在本题中只有一个自变量,即线性模型为 Y i {Y_i} Yi = β 0 {\beta_0} β0 + β 1 X i 1 {\beta_1X_{i1}} β1X

### 加权最小二乘法(WLS)估计以修正异方差性 为了在Stata中实现加权最小二乘法(Weighted Least Squares, WLS),可以采用`regress`命令并结合权重选项来完成。具体来说,当存在异方差性时,可以通过计算残差平方作为权重来进行调整。 #### 计算步骤说明: 假设有一个线性模型 \( y = X \beta + u \),其中误差项可能存在异方差性,则可通过以下方式应用WLS: 1. 使用OLS估计初始参数; 2. 基于OLS的结果得到残差; 3. 利用这些残差构建新的权重向量; 4. 应用带有权重的回归分析。 下面是具体的代码示例[^4]: ```stata * Step 1: Run OLS regression to get residuals regress y x1 x2 * Save the squared residuals as weights predict ehat, resid gen weight = 1/(ehat^2) * Step 2: Perform weighted least squares using pweights or aweight depending on context regress y x1 x2 [pweight=weight] * Alternatively use robust standard errors with original model if only interested in correcting SEs regress y x1 x2 , vce(robust) ``` 这段代码首先通过普通的最小二乘法(OLS)拟合了一个简单的线性模型,并保存了预测出来的残差值。接着创建了一个倒数形式的新变量 `weight` 来表示每个观测点的重要性程度——即较小的残差对应较大的权重。最后一步则是利用这个新建立起来的权重再次执行回归分析,从而达到减轻异方差影响的目的。 对于那些只关心标准误校正而不改变系数估计的情况,还可以考虑直接加上稳健型的标准误选项(`vce(robust)`), 这样做可以在保持原有估计不变的同时提供更为可靠的推论依据。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值