异方差练习
模型初步估计
我们首先通过散点图(如下所示)可以看出可支配收入与消费支出之间有一定的正相关,当可支配收入少的时候,消费支出也会相对减小。当个人可支配收入多的时候,消费支出也会相对增加。
mydata <- read.table("clipboard",header = T)
plot(mydata$X,mydata$Y,xlab = "个人可支配收入",ylab="消费支出")
用R拟合后,发现个人可支配收入对于消费支出的影响是比较显著的。拟合值是0.6334.拟合效果还可以。拟合的效果图如下:
fit <- lm(Y~X,data = mydata)
s <- fitted(fit)
lines(mydata$X,s,col="red")
**
异方差的检验
**
- 图示法
图示法描述
是一种直观的判断,利用OLS估计所得到的残差值与随机扰动项方差有关的自变量作图。常见的做法就是采用残差平方对因变量Y或者自变量X做二维图初步判断是否存在异方差,以及异方差的存在的形式。可以在下图明显看到:自变量小的时候残差平方也比较小,自变量大的时候,残差平方也比较大。 ε i ^ 2 \hat{\varepsilon_i}^{2} εi^2的取值范围的扩大与缩小是异方差可能存在的一个信号。
-
Glejser检验
设线性模型是: Y i {Y_i} Yi = β 0 {\beta_0} β0 + β 1 X i 1 {\beta_1X_{i1}} β1Xi1 + β 2 X i 2 {\beta_2X_{i2}} β2Xi2 + … + β k X i k {\beta_kX_{ik}} βkXik + ε i {\varepsilon_i} εi , i {i} i = 1 , 2... n {1,2...n} 1,2...n
在本题中只有一个自变量,即线性模型为 Y i {Y_i} Yi = β 0 {\beta_0} β0 + β 1 X i 1 {\beta_1X_{i1}} β1X