线面积分应该没那么难吧···

线面积分其实没那么难

笔者学习这部分内容的时候,恰逢新冠疫情导致在家上网课。众所周知as everyone knows,在家上网课=没上。所以我这部分就没学明白,当时爱玩LOL,边打游戏边看网课,玩着亚托克斯,老师讲着斯托克斯。后来等考研复习的时候,由于我基础没打好,对这部分内容的敬畏和恐惧也油然而生。当然,这部分每年考研都会出一道大题和一道小题,难度并不大,所以这些分数必须拿下。在这过程中对于我最初学习的困惑给出了自己的想法。

什么叫曲线曲面积分,跟二重、三重积分有什么差别

当我们学完重积分之后开始学线面积分的时候,我们可能一脸懵逼。这怎么被积函数和被积区域长得这么像?被积区域是啥?为啥线面积分能把方程带入进被积函数里?这些疑问都会导致我们对这部分知识理解出现模糊。实际上我们只需要把握住两个部分:①积分区间的几何形状被积元素
对于一重积分来说
∫ a b f ( x ) d x \int_{a}^{b} f(x)dx abf(x)dx
积分区间表示一条沿x轴的直线从x=a变化到x=b,x可以存在这条直线上任何一点。dx表示单变量x变化。对于极坐标 d r dr dr d θ d\theta dθ,都是一样的。
对于二重积分来说
∬ D x y f ( x , y ) d σ \iint\limits_{D_{xy}}^{} f(x,y)d\sigma Dxyf(x,y)dσ
积分区间表示 D x y D_{}xy Dxy所构成的几何图形平面, ( x , y ) (x,y) (x,y)可以存在这个平面内任何一点。 d σ d\sigma dσ表示被积元素是一个微小面积,见课本的描述
在这里插入图片描述
所以 d σ d\sigma dσ也就看成dxdy,我们需要积分两次。
对于三重积分来说
∭ Ω x y z f ( x , y , z ) d ν \iiint\limits_{\Omega_{xyz} }^{}f(x,y,z)d\nu Ωxyzf(x,y,z)dν
积分区间表示在 Ω x y z \Omega_{xyz} Ωxyz所表示的空间几何体, ( x , y , z ) (x,y,z) (x,y,z)可以存在这个空间几何体内的任何一点。 d ν d\nu dν表示被积元素是一个小几何体,见课本描述
在这里插入图片描述
所以我们对dxdydz积分共三次。
总结一下:一重积分的积分区域是一条线,二重积分的积分区域是一个平面,三重积分的积分区域是一个几何体的内部,而不仅是表面。
那么曲线积分就是将一重积分的积分区域从直线变成了曲线;曲面积分就是将二重积分的积分区域从平面变成了曲面

为啥有时候能把方程代入被积函数?

For example:
在这里插入图片描述
大家考虑一下①和②哪一个可以把 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1代入被积函数?
在做题的时候,大家可能会疑惑:为啥有时候被积区域的方程可以代入被积函数,有时候不能代入?
这其实是由于被积变量所存在的位置决定。
当我们计算二重积分,三重积分的时候,此时(x,y)或者(x,y,z)是分布在平面内或者几何体内,而不是局限在平面的外边缘和几何体的外表面。就上面的例子来说,(x,y)不仅位于 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1上,还在 x 2 + y 2 < 1 x^2+y^2<1 x2+y2<1这个平面内,那么在 D x y D_{xy} Dxy x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1就不是恒成立的,就不可以代入。
而在计算曲面曲线积分的时候,此时(x,y)或者(x,y,z)是分布在曲线、曲面上,也就是说,(x,y)恒满足 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1,这个时候就可以把方程代入啦。

dS和dxdy、dydz、dxdz有啥关系

在曲线积分中,因为被积元素是ds,即一段微小弧长,而在第三章微分中我们知道
弧微分的关系式
d s = 1 + f ′ ( x ) 2 d x ds=\sqrt{1+{f'(x)^2}} dx ds=1+f(x)2 dx
那么我们就可以将难以计算的ds给转换为易于计算的dx了。
那么dS是什么呢?跟 d σ d\sigma dσ有啥区别?跟dxdy、dydz、dxdz有啥关系?
由前面我们知道 d σ = d x d y d\sigma =dxdy dσ=dxdy,因为 σ \sigma σ是在一个xOy平面内被积区域中的一个微小平面区域。而曲面积分的被积区域是一个曲面,那么dS就是在这个曲面上的一个微小曲面区域。既然dS不是平面,那么就跟在xOy面上的dxdy肯定不相等了。但微积分注重一个“以直代曲”,我们就取一个十分微小的矩形dS,这时候虽然dS不和xOy面平行,但也是一个小平面,只不过两者之间有一定的角度。这个偏转就是关于z的方向余弦。换句话说,dxdy就是dS在xOy面的投影
在这里插入图片描述
那么这里为啥是 1 + z x 2 + z y 2 \sqrt{1+z_x^2+z_y^2} 1+zx2+zy2 ,我们可以这样理解:存在一个垂直于yOz面的平面,我们从x的正方向往负方向看去,这个平面就变成了一条直线:
在这里插入图片描述
这个时候平面的面积S和平面在xOy面投影的面积Sxy的数量关系就显而易见了。这只是举了个特例进行验证,严格证明我也不清楚,可以参考相关资料~
而dydz和dxdz也是同样的理解,我就不再赘述了。

如何判断线面积分的奇偶性和轮换对称性

在这里插入图片描述
这道题怎么做呢?看我的手法
在这里插入图片描述
相信大家写到这里之后就傻眼了:这被积函数跟方程P关系没有,没法直接代入式子了。然后开始采用一般的方法
∫ a b ( x 2 + 4 x y + 4 y 2 ) 1 + f ′ ( x ) 2 d x \int_{a}^{b} (x^2+4xy+4y^2)\sqrt{1+{f'(x)}^2}dx ab(x2+4xy+4y2)1+f(x)2 dx
结果这式子复杂的一P,这题感觉寄了。。要我说,这样做你就慢了。
这部分出题的时候,你积了半天发现式子太复杂没法做,一边骂破题一边翻开答案发现,人家利用奇偶性和轮换对称性化简了式子,题目立马明朗起来。而你只会悔恨当初自己为什么没想到······
做题的时候养成习惯,先看看有没有能利用奇偶性和轮换对称性的,尤其被积区域是一个圆、球、锥、柱体。
首先是奇偶性
奇偶性是指被积区域关于某个轴对称( L : x 2 + y 2 = 1 L:x^2+y^2 = 1 L:x2+y2=1),而被积函数正好关于这个变量是奇函数( f ( x ) = x y f(x) =xy f(x)=xy),那么
∮ L f ( x ) d s = 0 \oint_{L}^{}f(x)ds=0 Lf(x)ds=0
若被积函数关于这个变量是偶函数( f ( x ) = x 2 y f(x)=x^2y f(x)=x2y),那么
∮ L f ( x ) d s = 2 ∮ L ′ f ( x ) d s 其中 L ’: { x 2 + y 2 = 1 x ≥ 0 \oint_{L}^{}f(x)ds=2\oint_{L'}^{}f(x)ds \\ 其中L’:\begin{cases} x^2+y^2=1 \\ x \ge 0 \end{cases} \\ Lf(x)ds=2Lf(x)ds其中L{x2+y2=1x0
总之要利用奇偶性,被积区域必须是关于某个轴对称,再去考虑被积函数的奇偶性。
轮换对称性是更更更重要的,因为它能化简一些看似很难算的积分,就比如说上面的那道题目。
那么啥是轮换对称性?
若 f ( x , y ) = f ( y , x ) ,说明 f ( x , y ) 关于 x , y 有轮换对称性。 若f(x,y)=f(y,x),说明f(x,y)关于x,y有轮换对称性。\\ f(x,y)=f(y,x),说明f(x,y)关于xy有轮换对称性。
只要把方程的两个参数交换位置,而方程形式不变,就说明这两个参数有轮换对称性。
同样的,轮换对称性也是用被积区间所决定的。当积分区间容易表示,如一个平面关于y=x对称,那么就说明x,y具有轮换对称性
∬ f ( x , y ) d x d y = ∬ f ( y , x ) d x d y = 1 2 ∬ [ f ( x , y ) + f ( y , x ) ] d x d y \iint f(x,y)dxdy=\iint f(y,x)dxdy=\frac{1}{2} \iint [f(x,y)+f(y,x)]dxdy f(x,y)dxdy=f(y,x)dxdy=21[f(x,y)+f(y,x)]dxdy
如果积分区间不容易表示或画出来,就比如说上面的交线方程
{ x 2 + y 2 + z 2 = 1 x + y + z = 0 \begin{cases} x^2+y^2+z^2=1\\ x+y+z=0 \end{cases} {x2+y2+z2=1x+y+z=0
我们就可以试着两两对换一下方程里的x,y,z,观察对换后的方程和原来是否相同,这也可以说明具有轮换对称性。
那么很显然了,本题x,y,z两两都具有轮换对称性。
在这里插入图片描述
大家可以严格按照轮换对称性的定义,去分析上面步骤是如何得出来的,至此我们就可以把方程给代入进被积函数啦~~~
提两个小问题:

1. 为啥 ∮ x 2 d s = ∮ x 2 d s = ∮ z 2 d s 1.为啥 \oint x^2ds=\oint x^2ds=\oint z^2ds 1.为啥x2ds=x2ds=z2ds
2. 为啥 ∮ x y d s = ∮ x z d s = ∮ y z d s 2.为啥 \oint xyds=\oint xzds=\oint yzds 2.为啥xyds=xzds=yzds

小tip:

通常我们做这部分题目需要画图,因为我们如果能直观的感受到这个图形,对做题是非常有帮助的。但碍于我们的空间想象的能力缺乏以及图形的复杂,我们并不能完整的画出来交线或者截面。但我们可以定性的分析一下:
{ x 2 + y 2 + z 2 = 1 x + y + z = 0 \begin{cases} x^2+y^2+z^2=1\\ x+y+z=0 \end{cases} {x2+y2+z2=1x+y+z=0
以这个方程为例,是由一个球面和一个平面相交截得的一条曲线。那么我们能得到什么呢?

  1. 平面过原点,那么曲线的周长即为球体最大截面圆的周长
  2. 曲线是球体的曲线,截面是平面的截面
  3. 球体约束了曲线的投影;平面约束了截面的方向余弦
  4. 坐标面投影是一个椭圆
  5. ······

文字很多,但都是我自己所总结和思考的一些东西。我觉得课本是用来查漏补缺的,我们在一轮复习的时候很多东西都是只重视计算过程,没注重概念的理解。在二轮复习的时候理所当然会有很多的疑问,这时候我们再回归课本,有着一轮的基础以后我们对课本的认识也会更加的深刻。所以我在写博客的时候会时不时翻阅课本,有些内容也是直接来自课本,这样才能对知识的理解上升一个维度。
大家如果觉得不错,下周开级数的坑。最近做题被级数折磨的头疼,下周必须给它拿下!!!

2023.1.3更新

终于考完了,发现电脑里有之前做的思维导图
在这里插入图片描述

  • 16
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值