高等数学(下)曲线积分与曲面积分

本文深入探讨了高等数学中的曲线积分与曲面积分,包括对弧长和坐标的曲线积分,以及格林公式的应用。文章详细阐述了各种积分的定义、性质、计算方法,展示了它们在几何、物理问题中的意义,如计算曲线弧的质量、力场作功,以及建立二重积分与曲线积分的联系。同时,介绍了斯托克斯公式和高斯公式,揭示了空间积分与表面积分的内在联系。
摘要由CSDN通过智能技术生成

1 曲线积分

1.1 对弧长的曲线积分

1.1.1 定义

1.1.1.1 表达式

Lf(x,y)ds=limλ0i=1nf(ξi,ηi)Δsi ∫ L f ( x , y ) d s = lim λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ s i

1.1.1.2 存在性

f(x,y) f ( x , y ) 在曲线弧 L L 上连续,则 L f ( x , y ) d s 存在。

1.1.1.3 物理意义

Lf(x,y)ds ∫ L f ( x , y ) d s 表示线密度为 f(x,y) f ( x , y ) 的曲线弧 L L 的质量。

1.1.1.4 空间曲线弧

Γ 为空间曲线弧,则

Γf(x,y,z)ds=limλ0i=1nf(ξi,ηi,ςi)Δsi ∫ Γ f ( x , y , z ) d s = lim λ → 0 ∑ i = 1 n f ( ξ i , η i , ς i ) Δ s i

1.1.2 性质

1.1.2.1 线性性质

L[αf(x,y)+βg(x,y)]ds=αLf(x,y)ds+βLg(x,y)ds,α,β ∫ L [ α f ( x , y ) + β g ( x , y ) ] d s = α ∫ L f ( x , y ) d s + β ∫ L g ( x , y ) d s , ( α , β 为 常 数 )

1.1.2.2 积分弧段可加性

若积分弧段 L L 可分为两段光滑曲线弧 L 1 , L 2 ,则

Lf(x,y)ds=L1f(x,y)ds+L2f(x,y)ds ∫ L f ( x , y ) d s = ∫ L 1 f ( x , y ) d s + ∫ L 2 f ( x , y ) d s

1.1.2.3 比较定理

设在 L L f ( x , y ) g ( x , y )

Lf(x,y)dsLg(x,y)ds ∫ L f ( x , y ) d s ≤ ∫ L g ( x , y ) d s

1.1.2.4 中值定理

f(m) f ( m ) L L 上连续,则存在 M 0 L 使得 Lf(m)ds=f(M0)|L| ∫ L f ( m ) d s = f ( M 0 ) | L | , 其中 |L| | L | 是曲线 L L 的长度。

1.1.2.5 无向性

L f ( x , y ) d s = L f ( x , y ) d s L L

1.1.3 计算法

1.1.3.1 公式

f(x,y) f ( x , y ) 在曲线弧 L L 上有定义且连续, L 的参数方程为

{ x=φ(t)y=ψ(t)(αtβ) { x = φ ( t ) y = ψ ( t ) ( α ≤ t ≤ β )

其中 φ2(t)+ψ2(t)0 φ ′ 2 ( t ) + ψ ′ 2 ( t ) ≠ 0 ,则曲线积分 Lf(x,y)ds ∫ L f ( x , y ) d s 存在,且

Lf(x,y)ds=βαf(φ(t),ψ(t))φ2(t)+ψ2(t)dt(α<β) ∫ L f ( x , y ) d s = ∫ α β f ( φ ( t ) , ψ ( t ) ) φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t ( α < β )

1.1.3.2 注意要点
1.1.3.2.1 特殊情况

{ x=x(y)y=y { x = x ( y ) y = y


{
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值