文心一言 VS 讯飞星火 VS chatgpt (308)-- 算法导论22.2 6题

六、举出一个有向图 G = ( V , E ) G=(V,E) G=(VE)的例子,对于源结点 s ∈ V s∈V sV和一组树边 E π ∈ E E_π∈E EπE,使得对于每个结点 v ∈ V v∈V vV,图 ( V , E π ) (V,E_π) (VEπ)中从源结点 s s s到结点 v v v的唯一简单路径也是图 G G G中的一条最短路径,但是,不管邻接链表里结点之间的次序如何,边集 E π E_π Eπ都不能通过在图 G G G上运行 BFS 来获得。如果要写代码,请用go语言。

文心一言:

为了提供一个满足题目要求的例子,我们可以设计一个稍微复杂的有向图,其中存在一些边在广度优先搜索(BFS)过程中可能会被误认为是非最短路径的一部分,但实际上它们对于某些节点的最短路径是必需的。以下是一个简单的图示例和Go语言代码,用于说明这种情况。

图示例

考虑以下有向图 G = ( V , E ) G = (V, E) G=(V,E),其中 V = { s , a , b , c , d } V = \{s, a, b, c, d\} V={s,a,b,c,d},边集 E E E 如下:

  • s → a s \rightarrow a sa(权重为1)
  • s → b s \rightarrow b sb(权重为1)
  • a → c a \rightarrow c ac(权重为1)
  • b → c b \rightarrow c bc(权重为1)
  • b → d b \rightarrow d bd(权重为1)
  • c → d c \rightarrow d cd(权重为10,这里故意设置得很大,用于制造复杂性)

在这个图中,从源节点 s s s 到每个节点的最短路径是:

  • s → a → c s \rightarrow a \rightarrow c sac
  • s → b → d s \rightarrow b \rightarrow d sbd

但是,如果我们按照BFS的顺序(假设节点以某种顺序被探索),可能会先通过 s → b → c s \rightarrow b \rightarrow c sbc 到达 c c c,这虽然不是到 c c c 的最短路径,但在BFS过程中是可能首先被发现的。

Go 语言代码

下面的Go代码示例并不直接实现BFS来生成 E π E_{\pi} Eπ,因为直接实现将很难精确控制边的选择顺序以符合上述要求。但我们可以模拟一个场景,其中我们手动指定 E π E_{\pi} Eπ 并验证其性质。

package main

import (
    "fmt"
)

// Graph structure
type Graph struct {
    vertices map[string][]*Edge
}

type Edge struct {
    to   string
    cost int
}

// AddEdge adds a directed edge to the graph
func (g *Graph) AddEdge(from, to string, cost int) {
    g.vertices[from] = append(g.vertices[from], &Edge{to: to, cost: cost})
}

// Simulated BFS-like selection of E_pi (but manually specified)
func main() {
    g := Graph{vertices: make(map[string][]*Edge)}
    g.AddEdge("s", "a", 1)
    g.AddEdge("s", "b", 1)
    g.AddEdge("a", "c", 1)
    g.AddEdge("b", "c", 1)
    g.AddEdge("b", "d", 1)
    g.AddEdge("c", "d", 10)

    // Manually specifying E_pi
    E_pi := []string{"s->a", "s->b", "a->c", "b->d"}

    // Verification that E_pi gives shortest paths from s to all vertices
    // (Note: This is a simple verification, not an actual shortest path algorithm)
    fmt.Println("Verifying E_pi gives shortest paths:")
    for _, path := range E_pi {
        parts := strings.Split(path, "->")
        if len(parts) == 2 && parts[0] == "s" {
            fmt.Printf("From %s to %s (via E_pi): Shortest path verified.\n", parts[0], parts[1])
        }
    }

    // Note: This code does not actually run BFS and compare the results.
    // It assumes a manually crafted E_pi that meets the criteria.
}

注意:上述代码中的 E_pi 是手动指定的,因为它直接反映了题目要求的路径集。在实际应用中,你可能需要实现一个更复杂的算法来根据图的特定属性动态地选择 E π E_{\pi} Eπ。此外,上述代码没有实现完整的BFS来验证 E π E_{\pi} Eπ 不能直接通过BFS获得,因为这通常需要比较多个BFS运行的结果和手动指定的 E π E_{\pi} Eπ

讯飞星火:

以下是一个有向图的例子,其中源节点为0,边集E_π满足题目要求:

V = {0, 1, 2, 3, 4}
E = {(0, 1), (0, 2), (1, 3), (2, 3), (3, 4)}

在这个例子中,从源节点0到每个节点的唯一简单路径如下:

  • 0 -> 1 -> 3 -> 4
  • 0 -> 2 -> 3 -> 4

然而,如果我们尝试使用BFS来找到最短路径,我们会得到以下结果:

  • 0 -> 1 -> 3 -> 4
  • 0 -> 2 -> 3 -> 4

可以看到,尽管这两个路径都是最短路径,但它们的顺序与邻接链表中的顺序不同。因此,我们不能通过在图G上运行BFS来获得边集E_π。

以下是使用Go语言实现的一个简单的BFS算法:

package main

import "fmt"

type Graph struct {
	vertices int
	edges    [][]int
}

func NewGraph(v int) *Graph {
	return &Graph{
		vertices: v,
		edges:    make([][]int, v),
	}
}

func (g *Graph) AddEdge(u, v int) {
	g.edges[u] = append(g.edges[u], v)
}

func BFS(g *Graph, start int) []int {
	visited := make([]bool, g.vertices)
	queue := []int{start}
	visited[start] = true
	result := []int{}

	for len(queue) > 0 {
		current := queue[0]
		queue = queue[1:]
		result = append(result, current)

		for _, neighbor := range g.edges[current] {
			if !visited[neighbor] {
				visited[neighbor] = true
				queue = append(queue, neighbor)
			}
		}
	}

	return result
}

func main() {
	g := NewGraph(5)
	g.AddEdge(0, 1)
	g.AddEdge(0, 2)
	g.AddEdge(1, 3)
	g.AddEdge(2, 3)
	g.AddEdge(3, 4)

	fmt.Println("BFS traversal from node 0:", BFS(g, 0))
}

这段代码定义了一个有向图结构,并实现了一个简单的BFS算法。在这个例子中,我们从节点0开始遍历图,输出的结果应该是[0 1 2 3 4]

360智脑:

首先,我们需要理解问题中的几个关键概念:

  1. 有向图 G = ( V , E ) G=(V, E) G=(V,E):一个由顶点集合 V V V 和边集合 E E E 组成的数据结构,其中每条边都有一个方向,从一个顶点指向另一个顶点。

  2. 源结点 s s s:图中被选为起点的一个特定顶点。

  3. 树边 E π E_π Eπ:在一个图中,如果存在一条从源结点 s s s 到任意结点 v v v 的路径,并且这条路径是唯一的,那么这条路径上的所有边被称为树边。

  4. BFS(广度优先搜索):一种图遍历算法,它从源结点开始,逐层向外扩展,直到遍历完所有可达的顶点。

现在,我们来构造一个满足题目要求的有向图的例子。考虑以下有向图 G G G

V = {s, a, b, c}
E = {(s, a), (a, b), (b, c), (s, c)}

这个图可以表示为:

s -> a -> b -> c
s -> c

在这个图中,如果我们选择源结点 s s s,那么树边集合 E π E_π Eπ 可以是 { ( s , a ) , ( a , b ) , ( s , c ) } \{(s, a), (a, b), (s, c)\} {(s,a),(a,b),(s,c)}。这个集合满足题目中的条件,因为从 s s s a a a b b b c c c 的唯一简单路径同时也是最短路径。然而,无论我们如何调整邻接链表中结点的顺序,使用 BFS 都无法得到这个特定的树边集合 E π E_π Eπ,因为在 BFS 过程中,一旦访问了某个结点,就会立即探索其所有的邻居,而不会考虑边的顺序。

现在,让我们用 Go 语言编写一个简单的 BFS 算法,并展示为什么在这种情况下无法得到 E π E_π Eπ

package main

import "fmt"

type Graph struct {
	vertices []*Vertex
}

type Vertex struct {
	key      int
	adjacent []*Vertex
}

func (g *Graph) addEdge(from, to *Vertex) {
	g.vertices[from.key].adjacent = append(g.vertices[from.key].adjacent, g.vertices[to.key])
}

func (g *Graph) BFS(start *Vertex) {
	queue := []*Vertex{start}
	visited := map[int]bool{start.key: true}
	for len(queue) > 0 {
		current := queue[0]
		queue = queue[1:]
		fmt.Printf("Visited %d\n", current.key)
		for _, neighbor := range current.adjacent {
			if !visited[neighbor.key] {
				visited[neighbor.key] = true
				queue = append(queue, neighbor)
			}
		}
	}
}

func main() {
	g := &Graph{make([]*Vertex, 4)}
	for i := range g.vertices {
		g.vertices[i] = &Vertex{key: i}
	}
	g.addEdge(0, 1) // s -> a
	g.addEdge(1, 2) // a -> b
	g.addEdge(2, 3) // b -> c
	g.addEdge(0, 3) // s -> c

	g.BFS(g.vertices[0]) // Start BFS from vertex s
}

在这个 Go 代码中,我们定义了一个简单的有向图数据结构,并实现了 BFS 算法。当我们运行这段代码时,BFS 会按照以下顺序访问顶点: s → a → c → b s \rightarrow a \rightarrow c \rightarrow b sacb。尽管我们可以控制边的添加顺序,但 BFS 算法本身并不关心这种顺序,因此无法保证得到特定的树边集合 E π E_π Eπ

智谱清言:

下面是一个有向图 G = ( V , E ) G=(V, E) G=(V,E)的例子,以及一组树边 E π E_π Eπ,它们满足您的要求。在这个例子中,从源结点 s s s到所有其他结点的唯一简单路径在图 G G G中也是最短路径,但是通过BFS遍历无法得到 E π E_π Eπ
首先,定义图 G G G如下:
顶点集合 V = { s , a , b , c , d } V = \{s, a, b, c, d\} V={s,a,b,c,d}
边集合 E = { ( s , a ) , ( s , b ) , ( a , c ) , ( b , c ) , ( c , d ) } E = \{(s, a), (s, b), (a, c), (b, c), (c, d)\} E={(s,a),(s,b),(a,c),(b,c),(c,d)}
权重集合 W = { ( s , a , 1 ) , ( s , b , 1 ) , ( a , c , 1 ) , ( b , c , 2 ) , ( c , d , 1 ) } W = \{(s, a, 1), (s, b, 1), (a, c, 1), (b, c, 2), (c, d, 1)\} W={(s,a,1),(s,b,1),(a,c,1),(b,c,2),(c,d,1)}
其中权重表示边的长度。
在这个图中,我们想要的一组树边 E π E_π Eπ是:
E π = { ( s , a ) , ( a , c ) , ( c , d ) } E_π = \{(s, a), (a, c), (c, d)\} Eπ={(s,a),(a,c),(c,d)} E π = { ( s , b ) , ( b , c ) , ( c , d ) } E_π = \{(s, b), (b, c), (c, d)\} Eπ={(s,b),(b,c),(c,d)}
这是因为从 s s s d d d的最短路径长度是3,并且上述两种情况都满足这个条件。然而,如果我们按照BFS遍历,我们会先访问 a a a然后是 c c c,然后是 d d d,如果 b b b在邻接链表中 a a a之前,BFS会先访问 b b b,然后是 c c c,这样会得到 E π = { ( s , b ) , ( b , c ) , ( c , d ) } E_π = \{(s, b), (b, c), (c, d)\} Eπ={(s,b),(b,c),(c,d)},这不是我们想要的树边集合,因为这样会忽略掉从 s s s c c c通过 a a a的路径。
以下是使用Go语言实现的代码,创建这个图并打印出所有边:

package main
import (
	"fmt"
)
// Edge 定义了图中的边
type Edge struct {
	From   string
	To     string
	Weight int
}
// Graph 定义了图的结构
type Graph struct {
	Vertices map[string]bool
	Edges    []Edge
}
// NewGraph 创建一个新的图
func NewGraph() *Graph {
	return &Graph{
		Vertices: make(map[string]bool),
		Edges:    []Edge{},
	}
}
// AddVertex 添加一个顶点
func (g *Graph) AddVertex(v string) {
	g.Vertices[v] = true
}
// AddEdge 添加一条边
func (g *Graph) AddEdge(from, to string, weight int) {
	g.Edges = append(g.Edges, Edge{From: from, To: to, Weight: weight})
}
// PrintEdges 打印所有边
func (g *Graph) PrintEdges() {
	for _, edge := range g.Edges {
		fmt.Printf("%v -> %v (Weight: %d)\n", edge.From, edge.To, edge.Weight)
	}
}
func main() {
	g := NewGraph()
	vertices := []string{"s", "a", "b", "c", "d"}
	for _, v := range vertices {
		g.AddVertex(v)
	}
	g.AddEdge("s", "a", 1)
	g.AddEdge("s", "b", 1)
	g.AddEdge("a", "c", 1)
	g.AddEdge("b", "c", 2)
	g.AddEdge("c", "d", 1)
	g.PrintEdges()
}

这段代码定义了一个图,并添加了所需的边和顶点。请注意,这段代码并没有实现BFS算法,因为根据您的要求,即使实现了BFS算法,也无法得到正确的 E π E_π Eπ。如果您需要BFS算法的实现,请告知,我可以提供相应的代码。

天工:

要构造一个有向图 (G=(V,E)),使得对于源节点 (s \in V) 和一组树边 (E_\pi \subset E),满足从 (s) 到每个节点 (v \in V) 的唯一简单路径也是 (G) 中的一条最短路径,但 (E_\pi) 不能通过在图 (G) 上运行 BFS 来获得,关键在于设计图的结构,使得 BFS 的顺序选择不能覆盖所有最短路径。

一个典型的例子是包含负边权的图,因为 BFS 是基于非负边权的最短路径算法。但是,题目中并没有提及边权,所以我们可以构造一个仅基于结构的图,使得 BFS 由于其固有的队列先进先出(FIFO)特性,不能总是找到从源节点到其他节点的特定最短路径,即使所有边的权值都相同。

考虑一个有向图,其中包含一个环,使得 BFS 从源节点开始时,由于其队列的性质,可能不会访问环中所有的节点,但通过其他路径可以访问。具体来说,考虑以下图:

s -> A -> B -> C -> D -> s
     ^           |
     |------------|

在这个图中,从 (s) 到每个其他节点 (A, B, C, D) 的最短路径是唯一且直接的路径,但是,如果从 (s) 开始运行 BFS,它可能会在访问 (A) 后直接访问 (D)(假设队列中节点的访问顺序是 (A) 然后 (D)),从而错过 (B) 和 (C)。因此,BFS 生成的树边集 (E_\pi) 将不会包括从 (s) 到 (B) 和 (C) 的路径。

然而,题目要求 (E_\pi) 不能通过 BFS 获得,这意味着 BFS 不能找到从 (s) 到所有节点的最短路径。在上述图中,如果我们假设 BFS 的队列访问顺序导致它错过了 (B) 和 (C),则 BFS 生成的边集将不包含 (E_\pi) 中的边。

下面是一个 Go 代码示例,用于创建和展示这个图:

package main

import (
	"fmt"
)

type Graph struct {
	adjList map[int][]int // Adjacency list representation of the graph
}

func NewGraph() *Graph {
	return &Graph{adjList: make(map[int][]int)}
}

func (g *Graph) AddEdge(from int, to int) {
	g.adjList[from] = append(g.adjList[from], to)
}

func (g *Graph) Display() {
	fmt.Println("Graph adjacency list:")
	for node, edges := range g.adjList {
		fmt.Printf("%d -> %v\n", node, edges)
	}
}

func main() {
	g := NewGraph()
	g.AddEdge(0, 1) // s -> A
	g.AddEdge(1, 2) // A -> B
	g.AddEdge(2, 3) // B -> C
	g.AddEdge(3, 4) // C -> D
	g.AddEdge(4, 0) // D -> s
	g.AddEdge(0, 4) // s -> D (to simulate a possible BFS ordering)

	// Display the graph
	g.Display()
}

在这个代码中,我们创建了一个有向图,并添加了边来模拟上述图的结构。注意,从 (s) 直接到 (D) 的边是模拟 BFS 可能的访问顺序。在实际运行 BFS 时,由于 Go 中 map 的迭代顺序是未定义的,我们无法精确控制 BFS 的具体顺序,但是通过构造图,我们展示了 BFS 可能无法找到所有最短路径的场景。

chatgpt:

以下是一个示例的有向图,其中包括源结点s、树边Eπ和路径要求:

package main

import (
	"fmt"
)

// 边结构体
type Edge struct {
	src, dest int // 源结点和目标结点
}

func main() {
	// 图的顶点数和边数
	V := 5
	E := 7
	
	// 创建邻接链表表示的有向图
	graph := make(map[int][]int)
	addEdge(graph, 0, 1)
	addEdge(graph, 0, 2)
	addEdge(graph, 1, 3)
	addEdge(graph, 1, 4)
	addEdge(graph, 2, 3)
	addEdge(graph, 3, 4)
	addEdge(graph, 4, 0)

	// 打印图中从源结点s到每个结点v的最短路径
	source := 0
	BFSShortestPath(source, V, graph)
}

// 添加边到邻接链表中
func addEdge(graph map[int][]int, src int, dest int) {
	graph[src] = append(graph[src], dest)
}

// 使用BFS算法打印从源结点到每个结点的最短路径长度(不考虑边集Eπ)
func BFSShortestPath(source int, V int, graph map[int][]int) {
	queue := []int{source}     // 广度优先搜索队列
	distances := make([]int,V) // 源节点到其他节点的最短距离

	visited := make([]bool,V) 
	for i := range visited {
		visited[i] = false
	}

	distances[source] = 0
	visited[source] = true

	for len(queue) > 0 {
		current := queue[0]
		queue = queue[1:]

		for _, neighbor := range graph[current] {
			if !visited[neighbor] {
				queue = append(queue, neighbor)
				distances[neighbor] = distances[current]+1
				visited[neighbor] = true
			}
		}
	}

	fmt.Println("从源结点到每个结点的最短路径长度:")
	for i := 0; i < V; i++ {
        fmt.Printf("节点 %d: 距离为 %d\n", i, distances[i])
    }
}

这是一个示例,其中从源结点s=0到每个结点v的最短路径长度分别为:节点 0: 距离为 0,节点 1: 距离为 1,节点 2: 距离为 1,节点 3: 距离为 2,节点4: 距离为2。需要注意的是,在边集Eπ={ {0,1}, {0,2}, {1,3}, {2,3}, {3,4} } 的情况下,无法通过在图G上运行BFS来获得这些结果。

kimi:

这个问题描述了一个有趣的情况,即存在一个有向图,其中通过BFS算法得到的树边集不能保证是最短路径树。下面是一个简单的例子:

设图 ( G ) 包含以下顶点和有向边:

  • 顶点集合 ( V = {s, a, b, c} )
  • 有向边集合 ( E = {(s, a), (s, b), (a, c), (b, c)} )

其中 ( s ) 是源节点。

在这个图中,如果我们从 ( s ) 开始执行 BFS 算法,我们可能会得到这样的树边集合 ( E_\pi = {(s, a), (a, c), (s, b), (b, c)} )。然而,这并不是最短路径树,因为 ( (s, b) ) 和 ( (b, c) ) 并不是从 ( s ) 到 ( c ) 的最短路径,最短路径应该是 ( (s, a) ) 和 ( (a, c) )。

下面是用 Go 语言编写的代码,演示了如何构建这样的图并执行 BFS 算法。请注意,这段代码仅用于演示问题,并不保证 ( E_\pi ) 是最短路径树。

package main

import (
	"fmt"
	"container/list"
)

type Graph struct {
	adjList map[int][]int
}

func (g *Graph) AddEdge(u, v int) {
	g.adjList[u] = append(g.adjList[u], v)
}

func (g *Graph) BFS(s int) {
	visited := make(map[int]bool)
	parent := make(map[int]int)
	q := list.New()

	visited[s] = true
	q.PushBack(s)

	for q.Len() > 0 {
		node := q.Front().Value.(int)
		q.Remove(q.Front())

		for _, adj := range g.adjList[node] {
			if !visited[adj] {
				visited[adj] = true
				parent[adj] = node
				q.PushBack(adj)
			}
		}
	}

	fmt.Println("BFS Tree Edges:")
	for child, p := range parent {
		fmt.Printf("(%d, %d)\n", p, child)
	}
}

func main() {
	g := &Graph{adjList: make(map[int][]int)}

	// Add edges to the graph
	g.AddEdge(0, 1)
	g.AddEdge(0, 2)
	g.AddEdge(1, 3)
	g.AddEdge(2, 3)

	// Source node
	source := 0

	// Perform BFS from the source node
	g.BFS(source)
}

这段代码定义了一个有向图,并实现了 BFS 算法。它添加了问题中描述的边,并从源节点 ( s ) 开始执行 BFS。然而,正如问题所述,BFS 得到的边集可能不是最短路径树。在实际应用中,如果需要找到最短路径,我们通常会使用 Dijkstra 算法或 Bellman-Ford 算法。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

混元:

为了找到一个满足条件的有向图 G = ( V , E ) G=(V, E) G=(V,E),我们可以构造一个图,其中存在一条从源节点 s s s到所有其他节点的最短路径,但这条路径不能通过广度优先搜索(BFS)得到。我们可以使用一个有向无环图(DAG),并在其中添加一条特殊路径,该路径将导致BFS无法找到最短路径。

考虑以下有向图 G G G,其中包含5个节点:

A --1-- B --2-- D
 \      \
  \      1
   2     C
   \   /
     \ /
      E

在这个图中,我们可以选择节点 A A A作为源节点 s s s。从 A A A出发,存在两条到达节点 D D D的路径: A − > B − > D A->B->D A>B>D(长度3)和 A − > E − > C − > D A->E->C->D A>E>C>D(长度3)。这两条路径都是最短路径,但BFS在遍历图时会优先遍历 A − > B − > D A->B->D A>B>D,而不会发现 A − > E − > C − > D A->E->C->D A>E>C>D这条路径,因为它不是从 A A A直接到达 D D D的最短路径。

我们可以使用Go语言编写代码来构造这个图,并验证我们的结论。但是,需要注意的是,BFS算法本身并不能保证找到所有最短路径,因为它在找到一条最短路径后就会停止扩展当前层次的节点。因此,我们需要设计一个特殊的算法来找到所有最短路径,并验证它们是否都能在原始图中找到。

以下是一个简单的Go语言代码示例,用于构造上述有向图并验证从源节点 s s s到所有其他节点的最短路径:

package main

import (
	"fmt"
	"math"
)

type Graph struct {
	vertices map[string][]Edge
}

type Edge struct {
	to     string
	weight int
}

func NewGraph() *Graph {
	return &Graph{vertices: make(map[string][]Edge)}
}

func (g *Graph) AddEdge(from, to string, weight int) {
	g.vertices[from] = append(g.vertices[from], Edge{to, weight})
}

func shortestPath(g *Graph, start string) map[string]int {
	distances := make(map[string]int)
	for v := range g.vertices {
		distances[v] = math.MaxInt32
	}
	distances[start] = 0

	var visit func(current string)
	visit = func(current string) {
		for _, edge := range g.vertices[current] {
			if distances[edge.to] > distances[current]+edge.weight {
				distances[edge.to] = distances[current] + edge.weight
				visit(edge.to)
			}
		}
	}

	visit(start)
	return distances
}

func main() {
	g := NewGraph()
	g.AddEdge("A", "B", 1)
	g.AddEdge("B", "D", 2)
	g.AddEdge("A", "E", 2)
	g.AddEdge("E", "C", 1)
	g.AddEdge("C", "D", 1)

	distances := shortestPath(g, "A")

	for node, distance := range distances {
		fmt.Printf("Distance from A to %s: %d\n", node, distance)
	}
}

这段代码定义了一个有向图结构,并实现了添加边和计算从源节点到所有其他节点的最短路径的功能。在main函数中,我们构造了上述有向图,并计算了从节点"A"到所有其他节点的最短路径。运行这段代码将输出每个节点到源节点"A"的最短距离,验证我们的结论。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

  • 12
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
星火文心一都是对话生成模型,通义则是一个处理数理逻辑的目。星火在中文理解和代码生成方面表现更好,更懂中文,特别是对中文网络黑话更有理解。文心一在中文理解方面也很出色,但在代码生成方面稍逊于星火。通义则是一个数理逻辑目,与星火文心一的对话生成能力不同。所以,这三个模型在功能和应用方面有所差异。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [星火 VS 文心一:谁是中文大语模型的TOP1?](https://blog.csdn.net/qq_41895747/article/details/130620628)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [国内外大多ChatGPT类服务的汇总评测,有内容也有图片 GPT-4,Claude+,Bard,通义千问,文心一星火……](https://download.csdn.net/download/liu_tao/87832187)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

福大大架构师每日一题

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值