高等数学(同济大学数学科学学院)第8版上册(更新中)

第一章 函数与极限

第一节 映射与函数

一、映射

f从x到y的映射: f : X → Y f:X→Y f:XY,x是原像,y是像。函数中x是自变量,y是因变量。

映射三要素:
集合X,定义域 D = D f = X D=D_f=X D=Df=X
集合Y,值域 R f = f ( D ) = f ( X ) = { f ( x ) ∣ x ∈ X } = { y ∣ y = f ( x ) , x ∈ D } , R f ⊆ Y R_f=f(D)=f(X)=\{f(x)|x∈X\}=\{y|y=f(x),x∈D\},R_f⊆Y Rf=f(D)=f(X)={ f(x)xX}={ yy=f(x),xD}RfY,教材上用的是 ⊂ \subset
对应法则 f f f

满射:Y全部用完
单射:x和y一 一对应,但Y不一定用完。
一 一映射(双射):满射+单射。

映射,算子,泛函,变换,函数(实数集X→实数集Y)。

逆映射:
f : X → Y f:X→Y f:XY
g : R f → X g:R_f→X g:RfX
g = f − 1 g=f^{-1} g=f1
定义域: D f − 1 = R f D_{f^{-1}}=R_f Df1=Rf
值域: R f − 1 = X R_{f^{-1}}=X Rf1=X

mathmatica求反函数,优先使用方法2
方法1:

ClearAll["Global`*"];
(*定义函数*)f[x_] := x + 1;

(*使用 InverseFunction*)
inverse = InverseFunction[f]

在这里插入图片描述

方法2:

ClearAll["Global`*"];
(*定义函数*)f[x_] := x + 1;

(*求反函数*)
inverse = x /. Solve[y == f[x], x][[1]]

在这里插入图片描述

复合映射:
设有两个映射: g : X → Y 1 , f : Y 2 → Z g:X→Y_1,f:Y_2→Z g:XY1f:Y2Z
f ∘ g = f [ g ( x ) ] f \circ g=f[g(x)] fg=f[g(x)] R g ⊆ D f R_g⊆D_f RgDf,教材上用的是 ⊂ \subset ,满足结合律,不满足交换律

二、函数

绝对值函数、符号函数、取整函数、狄利克雷函数

函数的几种特性:
有界性、单调性、奇偶性、周期性、凹凸性

初等函数:幂指对,三反三
双曲正弦、双曲余弦、双曲正切
反双曲正弦、反双曲余弦、反双曲正切

y = x + 2 + 1 y=\sqrt{x+2}+1 y=x+2 +1,求定义域和值域

(*求定义域,需要程序员构造不等式*)
domain = Reduce[x + 2 >= 0, x, Reals];
domain

在这里插入图片描述

(*求值域*)
y = Sqrt[x + 2] + 1;
range = FunctionRange[y, x, y];
range

mathematica 8.0不支持,暂无输出结果。

第二节 数列的极限

一、数论极限的定义

lim ⁡ n → ∞ x n = a ⇔ ∀ ε > 0 , ∃ 正整数 N ,当 n > N 时,有 ∣ x n − a ∣ < ε \lim_{n \to \infty} x_n= a\Leftrightarrow \forall \varepsilon>0, \exists 正整数N,当n>N时,有|x_n-a|<\varepsilon nlimxn=aε>0正整数N,当n>N时,有xna<ε

二、收敛数列的性质

1.极限唯一。
2.收敛必有界,反之不一定成立。
3.收敛数列的保号性: 如果 lim ⁡ n → ∞ x n = a 且 a > 0 ( 或 a < 0 ) ,那么存在正整数 N ,当 n > N 时,都有 x n > 0 ( x n < 0 ) 如果\lim_{n \to \infty} x_n= a且a>0(或a<0),那么存在正整数N,当n>N时,都有x_n>0(x_n<0) 如果nlimxn=aa>0(a<0),那么存在正整数N,当n>N时,都有xn>0xn<0
4.原数列收敛,那么子数列也收敛,反之不一定成立。

第三节 函数的极限

一、函数极限的定义

自变量趋于有限值时函数的极限:
lim ⁡ x → x 0 f ( x ) = A ⇔ ∀ ε > 0 , ∃ δ > 0 ,当 0 < ∣ x − x 0 ∣ < δ 时,有 ∣ f ( x ) − A ∣ < ε \lim_{x \to x_0} f(x)= A\Leftrightarrow \forall \varepsilon>0, \exists\delta>0,当0<|x-x_0|<\delta时,有|f(x)-A|<\varepsilon xx0limf(x)=Aε>0δ>0,当0<xx0<δ时,有f(x)A<ε

自变量趋于无穷大时函数的极限:
lim ⁡ x → ∞ f ( x ) = A ⇔ ∀ ε > 0 , ∃ X > 0 ,当 ∣ x ∣ > X 时,有 ∣ f ( x ) − A ∣ < ε \lim_{x \to \infty} f(x)= A\Leftrightarrow \forall \varepsilon>0, \exists X>0,当|x|>X时,有|f(x)-A|<\varepsilon xlimf(x)=Aε>0X>0,当x>X时,有f(x)A<ε

二、函数极限的性质,跟数列极限类似

1.极限唯一性
2.局部有界性
3.局部保号性
4.函数收敛,其数列也收敛

第四节 无穷小和无穷大

自然智慧即可。

第五节 极限运算法则

自然智慧即可。

第六节 极限存在准则 两个重要极限

极限存在准则:
1.夹逼准则
2.单调有界数列必有极限。单调有界是充分条件。
柯西极限存在准则,也叫柯西申敛原理。
数列 { x n } \{x_n\} { xn}收敛的充分必要条件是:对于任意给定的正数 ε \varepsilon ε,存在正整数 N N N,使得当 m > N m>N m>N n > N n>N n>N,有 ∣ x n − x m ∣ < ε |x_n-x_m|<\varepsilon xnxm<ε

两个重要极限:
lim ⁡ x → 0 s i n x x = 1 \lim_{x \to 0} \frac{sin x}{x}=1 x0limxsinx=1
lim ⁡ x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty}( 1+\frac{1}{x})^x=e xlim(1+x1)x=e

mathmatica求极限:

Limit[(1 + 1/x)^x, x -> Infinity]

在这里插入图片描述

第七章 无穷小的比较

高阶无穷小
低阶无穷小
同阶无穷小、等价无穷小
k阶无穷小

求极限的时候, f ( x ) + g ( x ) f(x)+g(x) f(x)+g(x) f ( x ) f(x) f(x)不能用等价无穷小替换。 f ( x ) ∗ g ( x ) f(x)*g(x) f(x)g(x) f ( x ) f(x) f(x)可以用等价无穷小替换。

第八章 函数的连续性与间断点

一、函数的连续性

左右极限相等并且极限等于函数值,那就是连续。

二、函数的间断点

第一类间断点(有极限):可去间断点、跳跃间断点。
第二类间断点(没有极限):无穷间断点(y趋于无穷)、振荡间断点。

第九节 连续函数的运算与初等函数的连续性

第十节 闭区间上连续函数的性质

f ( x ) f(x) f(x)连续,定义域是 [ a , b ] [a,b] [a,b]。两端点的值是 f ( a ) = A f(a)=A f(a)=A f ( b ) = B f(b)=B f(b)=B
1.有界性
值域在一个闭区间里。
2.零点定理与介值定理
零点定理: f ( a ) f(a) f(a) f ( b ) f(b) f(b)异号,即使 f ( a ) ∗ f ( b ) < 0 f(a)*f(b)<0 f(a)f(b)<0,则在开区间 ( a , b ) (a,b) (a,b)内至少有一点 ξ \xi ξ,使 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0
介值定理: f ( a ) = A f(a)=A f(a)=A f ( b ) = B f(b)=B f(b)=B,对于 A A A B B B之间的任意一个数 C C C,在开区间 ( a , b ) (a,b) (a,b)内至少有一点 ξ \xi ξ,使 f ( ξ ) = C f(\xi)=C f(ξ)=C
3.一致连续性
定义:设函数 f ( x ) f(x) f(x)在区间I上有定义,如果对于任意给定的正数 ε \varepsilon ε,总存在正数 δ \delta δ,使得对于区间I上的任意两点 x 1 x_1 x1, x 2 x_2 x2,当 ∣ x 1 − x 2 ∣ < δ |x_1-x_2|<\delta x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

福大大架构师每日一题

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值