第一章 函数与极限
第一节 映射与函数
一、映射
f从x到y的映射: f : X → Y f:X→Y f:X→Y,x是原像,y是像。函数中x是自变量,y是因变量。
映射三要素:
集合X,定义域 D = D f = X D=D_f=X D=Df=X
集合Y,值域 R f = f ( D ) = f ( X ) = { f ( x ) ∣ x ∈ X } = { y ∣ y = f ( x ) , x ∈ D } , R f ⊆ Y R_f=f(D)=f(X)=\{f(x)|x∈X\}=\{y|y=f(x),x∈D\},R_f⊆Y Rf=f(D)=f(X)={
f(x)∣x∈X}={
y∣y=f(x),x∈D},Rf⊆Y,教材上用的是 ⊂ \subset ⊂
对应法则 f f f
满射:Y全部用完
单射:x和y一 一对应,但Y不一定用完。
一 一映射(双射):满射+单射。
映射,算子,泛函,变换,函数(实数集X→实数集Y)。
逆映射:
f : X → Y f:X→Y f:X→Y
g : R f → X g:R_f→X g:Rf→X
g = f − 1 g=f^{-1} g=f−1
定义域: D f − 1 = R f D_{f^{-1}}=R_f Df−1=Rf
值域: R f − 1 = X R_{f^{-1}}=X Rf−1=X
mathmatica求反函数,优先使用方法2
方法1:
ClearAll["Global`*"];
(*定义函数*)f[x_] := x + 1;
(*使用 InverseFunction*)
inverse = InverseFunction[f]
方法2:
ClearAll["Global`*"];
(*定义函数*)f[x_] := x + 1;
(*求反函数*)
inverse = x /. Solve[y == f[x], x][[1]]
复合映射:
设有两个映射: g : X → Y 1 , f : Y 2 → Z g:X→Y_1,f:Y_2→Z g:X→Y1,f:Y2→Z
f ∘ g = f [ g ( x ) ] f \circ g=f[g(x)] f∘g=f[g(x)], R g ⊆ D f R_g⊆D_f Rg⊆Df,教材上用的是 ⊂ \subset ⊂,满足结合律,不满足交换律
二、函数
绝对值函数、符号函数、取整函数、狄利克雷函数
函数的几种特性:
有界性、单调性、奇偶性、周期性、凹凸性
初等函数:幂指对,三反三
双曲正弦、双曲余弦、双曲正切
反双曲正弦、反双曲余弦、反双曲正切
y = x + 2 + 1 y=\sqrt{x+2}+1 y=x+2+1,求定义域和值域
(*求定义域,需要程序员构造不等式*)
domain = Reduce[x + 2 >= 0, x, Reals];
domain
(*求值域*)
y = Sqrt[x + 2] + 1;
range = FunctionRange[y, x, y];
range
mathematica 8.0不支持,暂无输出结果。
第二节 数列的极限
一、数论极限的定义
lim n → ∞ x n = a ⇔ ∀ ε > 0 , ∃ 正整数 N ,当 n > N 时,有 ∣ x n − a ∣ < ε \lim_{n \to \infty} x_n= a\Leftrightarrow \forall \varepsilon>0, \exists 正整数N,当n>N时,有|x_n-a|<\varepsilon n→∞limxn=a⇔∀ε>0,∃正整数N,当n>N时,有∣xn−a∣<ε
二、收敛数列的性质
1.极限唯一。
2.收敛必有界,反之不一定成立。
3.收敛数列的保号性: 如果 lim n → ∞ x n = a 且 a > 0 ( 或 a < 0 ) ,那么存在正整数 N ,当 n > N 时,都有 x n > 0 ( x n < 0 ) 如果\lim_{n \to \infty} x_n= a且a>0(或a<0),那么存在正整数N,当n>N时,都有x_n>0(x_n<0) 如果n→∞limxn=a且a>0(或a<0),那么存在正整数N,当n>N时,都有xn>0(xn<0)
4.原数列收敛,那么子数列也收敛,反之不一定成立。
第三节 函数的极限
一、函数极限的定义
自变量趋于有限值时函数的极限:
lim x → x 0 f ( x ) = A ⇔ ∀ ε > 0 , ∃ δ > 0 ,当 0 < ∣ x − x 0 ∣ < δ 时,有 ∣ f ( x ) − A ∣ < ε \lim_{x \to x_0} f(x)= A\Leftrightarrow \forall \varepsilon>0, \exists\delta>0,当0<|x-x_0|<\delta时,有|f(x)-A|<\varepsilon x→x0limf(x)=A⇔∀ε>0,∃δ>0,当0<∣x−x0∣<δ时,有∣f(x)−A∣<ε
自变量趋于无穷大时函数的极限:
lim x → ∞ f ( x ) = A ⇔ ∀ ε > 0 , ∃ X > 0 ,当 ∣ x ∣ > X 时,有 ∣ f ( x ) − A ∣ < ε \lim_{x \to \infty} f(x)= A\Leftrightarrow \forall \varepsilon>0, \exists X>0,当|x|>X时,有|f(x)-A|<\varepsilon x→∞limf(x)=A⇔∀ε>0,∃X>0,当∣x∣>X时,有∣f(x)−A∣<ε
二、函数极限的性质,跟数列极限类似
1.极限唯一性
2.局部有界性
3.局部保号性
4.函数收敛,其数列也收敛
第四节 无穷小和无穷大
自然智慧即可。
第五节 极限运算法则
自然智慧即可。
第六节 极限存在准则 两个重要极限
极限存在准则:
1.夹逼准则
2.单调有界数列必有极限。单调有界是充分条件。
柯西极限存在准则,也叫柯西申敛原理。
数列 { x n } \{x_n\} {
xn}收敛的充分必要条件是:对于任意给定的正数 ε \varepsilon ε,存在正整数 N N N,使得当 m > N m>N m>N, n > N n>N n>N,有 ∣ x n − x m ∣ < ε |x_n-x_m|<\varepsilon ∣xn−xm∣<ε
两个重要极限:
lim x → 0 s i n x x = 1 \lim_{x \to 0} \frac{sin x}{x}=1 x→0limxsinx=1
lim x → ∞ ( 1 + 1 x ) x = e \lim_{x \to \infty}( 1+\frac{1}{x})^x=e x→∞lim(1+x1)x=e
mathmatica求极限:
Limit[(1 + 1/x)^x, x -> Infinity]
第七章 无穷小的比较
高阶无穷小
低阶无穷小
同阶无穷小、等价无穷小
k阶无穷小
求极限的时候, f ( x ) + g ( x ) f(x)+g(x) f(x)+g(x), f ( x ) f(x) f(x)不能用等价无穷小替换。 f ( x ) ∗ g ( x ) f(x)*g(x) f(x)∗g(x), f ( x ) f(x) f(x)可以用等价无穷小替换。
第八章 函数的连续性与间断点
一、函数的连续性
左右极限相等并且极限等于函数值,那就是连续。
二、函数的间断点
第一类间断点(有极限):可去间断点、跳跃间断点。
第二类间断点(没有极限):无穷间断点(y趋于无穷)、振荡间断点。
第九节 连续函数的运算与初等函数的连续性
第十节 闭区间上连续函数的性质
f ( x ) f(x) f(x)连续,定义域是 [ a , b ] [a,b] [a,b]。两端点的值是 f ( a ) = A f(a)=A f(a)=A和 f ( b ) = B f(b)=B f(b)=B
1.有界性
值域在一个闭区间里。
2.零点定理与介值定理
零点定理: f ( a ) f(a) f(a)和 f ( b ) f(b) f(b)异号,即使 f ( a ) ∗ f ( b ) < 0 f(a)*f(b)<0 f(a)∗f(b)<0,则在开区间 ( a , b ) (a,b) (a,b)内至少有一点 ξ \xi ξ,使 f ( ξ ) = 0 f(\xi)=0 f(ξ)=0。
介值定理: f ( a ) = A f(a)=A f(a)=A, f ( b ) = B f(b)=B f(b)=B,对于 A A A与 B B B之间的任意一个数 C C C,在开区间 ( a , b ) (a,b) (a,b)内至少有一点 ξ \xi ξ,使 f ( ξ ) = C f(\xi)=C f(ξ)=C。
3.一致连续性
定义:设函数 f ( x ) f(x) f(x)在区间I上有定义,如果对于任意给定的正数 ε \varepsilon ε,总存在正数 δ \delta δ,使得对于区间I上的任意两点 x 1 x_1 x1, x 2 x_2 x2,当 ∣ x 1 − x 2 ∣ < δ |x_1-x_2|<\delta ∣x