三、上面描述的 PERT 图的公式有一点不太自然。在一个更自然的结构下,图中的结点代表要执行的工作,边代表工作之间的次序限制,即边 (u,v) 表示工作 u 必须在工作 v 之前执行。在这种结构的图中,我们将权重赋给结点,而不是边。请修改 DAG-SHORTEST-PATHS 过程,使得其可以在线性时间内找出这种有向无环图中一条最长的路径。如果要写代码,请用go语言。
文心一言:
在处理有向无环图(DAG)并希望找到最长路径时,如果权重被赋给节点而不是边,并且我们关注的是从源节点到任意其他节点的最长路径,我们可以使用动态规划的方法来解决这个问题。然而,如果目标是找到图中任意两点之间的最长路径,问题将变得复杂且不一定存在多项式时间解决方案(特别是如果图中存在环,尽管这里我们处理的是DAG)。
对于DAG中的最长路径问题(权重在节点上),一个常见的方法是使用拓扑排序和动态规划。我们将基于这个思路来实现Go代码。
步骤 1: 拓扑排序
首先,我们需要对图进行拓扑排序,以确保在处理每个节点时,其所有前驱节点都已经被处理。
步骤 2: 动态规划计算最长路径
在拓扑排序的基础上,我们可以从源节点开始,逐步计算到达每个节点的最长路径。
以下是用Go语言实现的示例代码:
package main
import (
"container/heap"
"fmt"
)
type Node int
type Graph map[Node][]Node
type IntHeap []int
func (h IntHeap) Len() int {
return len(h) }
func (h IntHeap) Less(i, j int) bool {
return h[i] > h[j] } // 最大堆
func (h IntHeap) Swap(i, j int) {
h[i], h[j] = h[j], h[i] }
func (h *IntHeap) Push(x interface{
}) {
*h = append(*h, x.(int))
}
func (h *IntHeap) Pop() interface{
} {
old := *h
n := len(old)
x := old[n-1]
*h = old[0 : n-1]
return x
}
func topologicalSort(g Graph) ([]Node, error) {
inDegree := make(map[Node]int)
for u := range g {
inDegree[u] = 0
}
for u, neighbors := range g {
for _, v := range neighbors {
inDegree[v]++
}
}
queue := &IntHeap{
}
heap.Init(queue)
for u, degree := range inDegree {
if degree == 0 {
heap.Push(queue, int(u))
}
}
var sorted []Node
for queue.Len() > 0 {
u := Node(heap.Pop(queue).(int))
sorted = append(sorted, u)
for _, v := range g[u] {
inDegree[v]--
if inDegree[v] == 0 {
heap.Push(queue, int(v))
}
}
}
if len(sorted) != len(g) {
return nil, fmt.Errorf("graph has cycles")
}
return sorted, nil
}
func longestPath(g Graph, nodeWeights map[Node]int) (map[Node]int, error) {
sorted, err := topologicalSort(g)
if err != nil {
return nil, err
}
dp := make(map[Node]int)
for _, node := range sorted {
dp[node] = nodeWeights[node]
for _, neighbor := range g[node] {
if val, ok := dp[neighbor]; ok {
dp[node] = max(dp[node], val+nodeWeights[node])
}
}
}
return dp, nil
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func main() {
g := Graph{
0: []Node{
1, 2},
1: []Node{
3},
2: []Node{
3},
3: nil,
}
nodeWeights := map[Node]int{
0: 2,
1: 3,
2: 5,
3: 0,
}
longest, err := longestPath(g, nodeWeights)
if err != nil {
fmt.Println("Error:", err)
return
}
fmt.Println("Longest Path Values:", longest)
}
注意:
- 在
longestPath
函数中,dp[node]
存储的是从源节点(这里假设为所有节点可达的起始点)到node
的最长路径长度。 - 我们需要确保图是无环的,这通过拓扑排序来检查。
max
函数用于比较两个整数并返回较大的那个。- 这个实现假设图中至少有一个节点,并且所有节点都是可达的(从源节点出发)。在实际应用中,可能需要添加额外的逻辑来处理特殊情况。
讯飞星火:
为了在有向无环图(DAG)中找到最长路径,我们可以使用拓扑排序算法。首先,我们需要对图进行拓扑排序,然后按照拓扑排序的顺序遍历结点,同时更新每个结点的最长路径。以下是使用 Go 语言实现的代码:
package main
import (
"fmt"
)
type Edge struct {
To int
Cost int
}
func longestPath(n int, edges [][]Edge) []int {
// 初始化邻接表
adjList := make([][]Edge, n)
for _, edge := range edges {
u, v, cost := edge[0].To, edge[1].To, edge[1].Cost
adjList[u] = append(adjList[u], Edge{
v, cost})
}
// 拓扑排序
var topoSort func(int