geth v1.15.9重磅发布!Prague主网升级倒计时,5月7日这些EIP将改变以太坊

在这里插入图片描述

引言

以太坊核心客户端Geth迎来v1.15.9版本更新!本次升级不仅为即将到来的Prague硬分叉铺平道路,还包含多项性能优化和关键修复。Prague分叉已确定于北京时间2025年5月7日18:05:11(区块时间戳1746612311)启动,10项重要EIP将正式生效。本文将为你深度解析更新内容,助你提前做好准备!


核心更新一览
  1. Prague硬分叉正式定档

    • 主网激活时间:2025年5月7日10:05:11 UTC(区块时间戳1746612311)。
    • 包含10项关键EIP,涵盖安全性、执行层效率及验证者管理(下文详细展开)。
  2. EIP亮点速览

    • EIP-2537:BLS12-381曲线操作预编译,提升零知识证明兼容性。
    • EIP-6110:链上直接供应验证者存款,简化质押流程。
    • EIP-7691:Blob吞吐量提升,进一步优化Layer2性能。
    • EIP-7702:允许外部账户(EOA)临时切换为智能合约账户,增强灵活性。
  3. 性能与安全优化

    • 交易传播优化:CPU占用降低,节点负载更均衡。
    • 随机踢Peer机制:同步完成后随机断开低效节点,提升网络健康度。
    • 历史数据修剪改进:存储效率再升级,节点同步更快。

开发者必读细节
  • RPC接口变更eth_sendRawTransaction 不再返回无法上链的交易哈希,避免误导开发者。
  • 区块执行更严格:若EVM系统调用失败,整个区块将被标记为无效。
  • 日志索引器修复:多项边界条件Bug被解决,数据查询更可靠。

升级建议
  1. 节点运营商:务必在5月7日前升级至v1.15.9,避免分叉兼容性问题。
  2. DApp开发者:检查EIP-7702(EOA账户代码设置)和EIP-7623(calldata成本增加)对合约的影响。
  3. 普通用户:无需主动操作,但需警惕分叉期间的网络延迟。

获取新版Geth
  • 官方下载页:GitHub Releases
  • Docker镜像:ethereum/client-go:latest
  • Ubuntu用户:通过PPA仓库安装。
  • Mac用户:Homebrew一键更新。

结语

Prague分叉是以太坊迈向更高效、更安全的重要一步,而Geth v1.15.9是这一进程的关键基石。建议所有生态参与者尽快适配,共同迎接以太坊的新篇章!

可视化 LabelMe 的 JSON 标注文件,可以按照以下步骤进行操作: 1. 首先,安装 LabelMe 工具包。你可以通过以下命令使用 pip 安装: ``` pip install labelme ``` 2. 导入 labelme 包: ```python import labelme ``` 3. 使用 `labelme.LabelFile` 类加载 JSON 文件: ```python json_file = 'path/to/your/json/file.json' label_data = labelme.LabelFile(json_file) ``` 4. 获取图像数据和标注信息: ```python image_data = label_data.imageData annotations = label_data.shapes ``` 5. 可以使用 OpenCV 或其他图像处理库加载图像数据并显示: ```python import cv2 import numpy as np image = np.frombuffer(image_data, dtype=np.uint8) image = cv2.imdecode(image, cv2.IMREAD_COLOR) cv2.imshow("Image", image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 6. 可以使用 OpenCV 图像绘制函数绘制标注的边界框或多边形等形状: ```python for annotation in annotations: shape_type = annotation['shape_type'] points = annotation['points'] if shape_type == 'rectangle': x, y, w, h = cv2.boundingRect(np.array(points)) cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) elif shape_type == 'polygon': pts = np.array(points, np.int32) cv2.polylines(image, [pts], True, (0, 255, 0), 2) ``` 7. 最后,显示带有标注的图像: ```python cv2.imshow("Annotated Image", image) cv2.waitKey(0) cv2.destroyAllWindows() ``` 通过以上步骤,你可以将 LabelMe 的 JSON 文件中的图像和标注信息可视化显示出来。请确保已正确安装所需的包,并将代码中的文件路径替换为实际的 JSON 文件路径。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

福大大架构师每日一题

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值