2025-05-29:到达最后一个房间的最少时间Ⅱ。用go语言,你有一个大小为 n 行 m 列的地窖,每个格子代表一个房间,房间按网格排列。 给定一个二维数组 moveTime,大小为 n x m,m

#『技术文档』写作方法征文挑战赛#

2025-05-29:到达最后一个房间的最少时间Ⅱ。用go语言,你有一个大小为 n 行 m 列的地窖,每个格子代表一个房间,房间按网格排列。

给定一个二维数组 moveTime,大小为 n x m,moveTime[i][j] 表示你必须等到该时间点及之后才能开始进入房间 (i, j)。

你从时刻 t=0 的房间 (0, 0) 出发,每次移动只能到相邻(上下左右边相连)的房间。移动所花费的时间有规律,第一次移动用 1 秒,第二次移动用 2 秒,第三次移动又是 1 秒,第四次是 2 秒,依此类推,移动时间在 1 秒和 2 秒之间交替。

要求计算从起点 (0,0) 出发,到终点房间 (n-1, m-1) 所需要的最短总时间。

相邻房间是指两房间间有共同的边,无论是水平还是垂直方向。

2 <= n == moveTime.length <= 750。

2 <= m == moveTime[i].length <= 750。

0 <= moveTime[i][j] <= 1000000000。

输入:moveTime = [[0,4],[4,4]]。

输出:7。

解释:

需要花费的最少时间为 7 秒。

在时刻 t == 4 ,从房间 (0, 0) 移动到房间 (1, 0) ,花费 1 秒。

在时刻 t == 5 ,从房间 (1, 0) 移动到房间 (1, 1) ,花费 2 秒。

题目来自力扣3342。

解决步骤

  1. 初始化

    • 创建一个距离矩阵 d,大小为 n x m,初始值为无穷大(表示尚未到达),d[0][0] = 0(起点时间为 0)。
    • 创建一个访问矩阵 v,大小为 n x m,初始值为 false,表示是否已处理过该房间。
    • 使用优先队列(最小堆)来存储待处理的房间状态,初始时将起点 (0, 0, 0) 加入队列。
  2. 优先队列处理

    • 从队列中取出当前距离最小的状态 (x, y, dis)
    • 如果 (x, y) 是终点,直接返回 dis
    • 如果 (x, y) 已访问过,跳过。
    • 标记 (x, y) 为已访问。
  3. 邻居处理

    • 遍历当前房间的四个邻居 (nx, ny)
    • 检查邻居是否在地窖范围内。
    • 计算到达邻居的新时间:
      • 移动时间:根据移动次数的奇偶性决定是 1 秒还是 2 秒。移动次数由 (x + y) 的奇偶性决定(因为每次移动会改变奇偶性)。
      • 新时间 dist = max(d[x][y], moveTime[nx][ny]) + ((x + y) % 2 + 1)
        • (x + y) % 2 + 1 的值交替为 1 或 2。
    • 如果新时间比当前记录的 d[nx][ny] 更小,则更新 d[nx][ny] 并将 (nx, ny, dist) 加入队列。
  4. 终止条件

    • 当优先队列为空或终点被访问时终止。

时间和空间复杂度

  • 时间复杂度
    • 每个房间最多被处理一次,每次处理需要 O(log V) 时间(优先队列的插入和弹出操作)。
    • 总共有 V = n x m 个房间,因此时间复杂度为 O(V log V) = O(nm log(nm))。
  • 空间复杂度
    • 需要存储距离矩阵 d 和访问矩阵 v,均为 O(nm)。
    • 优先队列最多存储 O(nm) 个状态。
    • 因此总空间复杂度为 O(nm)。

最终复杂度

  • 时间复杂度:O(nm log(nm))(每个状态最多处理一次,优先队列操作)。
  • 空间复杂度:O(nm)(存储距离和访问状态,优先队列空间)。

Go完整代码如下:

package main

import (
	"container/heap"
	"fmt"
	"math"
)

func minTimeToReach(moveTime [][]int) int {
	n, m := len(moveTime), len(moveTime[0])
	d := make([][]int, n)
	v := make([][]bool, n)
	for i := range d {
		d[i] = make([]int, m)
		v[i] = make([]bool, m)
		for j := range d[i] {
			d[i][j] = math.MaxInt32
		}
	}

	dirs := [][]int{{1, 0}, {-1, 0}, {0, 1}, {0, -1}}
	d[0][0] = 0
	q := &PriorityQueue{}
	heap.Push(q, &State{0, 0, 0})

	for q.Len() > 0 {
		s := heap.Pop(q).(*State)
		if v[s.x][s.y] {
			continue
		}
		if s.x == n-1 && s.y == m-1 {
			break
		}
		v[s.x][s.y] = true
		for _, dir := range dirs {
			nx, ny := s.x+dir[0], s.y+dir[1]
			if nx < 0 || nx >= n || ny < 0 || ny >= m {
				continue
			}
			dist := max(d[s.x][s.y], moveTime[nx][ny]) + (s.x+s.y)%2 + 1
			if d[nx][ny] > dist {
				d[nx][ny] = dist
				heap.Push(q, &State{nx, ny, dist})
			}
		}
	}

	return d[n-1][m-1]
}

type State struct {
	x, y, dis int
}

type PriorityQueue []*State

func (pq PriorityQueue) Len() int {
	return len(pq)
}

func (pq PriorityQueue) Less(i, j int) bool {
	return pq[i].dis < pq[j].dis
}

func (pq PriorityQueue) Swap(i, j int) {
	pq[i], pq[j] = pq[j], pq[i]
}

func (pq *PriorityQueue) Push(x interface{}) {
	*pq = append(*pq, x.(*State))
}

func (pq *PriorityQueue) Pop() interface{} {
	old := *pq
	n := len(old)
	item := old[n-1]
	*pq = old[0 : n-1]
	return item
}

func main() {
	moveTime := [][]int{{0, 4}, {4, 4}}
	result := minTimeToReach(moveTime)
	fmt.Println(result)
}

在这里插入图片描述

Python完整代码如下:

# -*-coding:utf-8-*-

import heapq
import math

def minTimeToReach(moveTime):
    n, m = len(moveTime), len(moveTime[0])
    d = [[math.inf] * m for _ in range(n)]
    visited = [[False] * m for _ in range(n)]

    dirs = [(1,0), (-1,0), (0,1), (0,-1)]
    d[0][0] = 0
    pq = [(0, 0, 0)]  # (distance, x, y)

    while pq:
        dist, x, y = heapq.heappop(pq)
        if visited[x][y]:
            continue
        if x == n-1 and y == m-1:
            # 找到终点,结束
            break
        visited[x][y] = True

        for dx, dy in dirs:
            nx, ny = x + dx, y + dy
            if 0 <= nx < n and 0 <= ny < m:
                # 计算移动时间:
                # 当前房间的最早达到时间d[x][y]
                # 下一房间可开始移动的最早时间moveTime[nx][ny]
                # 挑战点是决定交替的移动时间是1秒还是2秒:
                # 公式 (x+y)%2 + 1 对应的就是奇偶步的交替时间
                step_cost = ((x + y) % 2) + 1

                # 计算下一个房间到达时间
                nd = max(d[x][y], moveTime[nx][ny]) + step_cost
                if d[nx][ny] > nd:
                    d[nx][ny] = nd
                    heapq.heappush(pq, (nd, nx, ny))

    return d[n-1][m-1]

# 测试样例
moveTime = [[0, 4], [4, 4]]
result = minTimeToReach(moveTime)
print(result)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

福大大架构师每日一题

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值