2025-11-20:买卖股票的最佳时机Ⅴ。用go语言,给定一个整数数组 prices(prices[i] 表示第 i 天的股票价格),以及一个整数 k。你最多可以执行 k 笔交易,每笔交易有两种形式

开源AI·十一月创作之星挑战赛 10w+人浏览 398人参与

2025-11-20:买卖股票的最佳时机Ⅴ。用go语言,给定一个整数数组 prices(prices[i] 表示第 i 天的股票价格),以及一个整数 k。你最多可以执行 k 笔交易,每笔交易有两种形式:

  • 正向交易(先买后卖):在某天 i 买入,在之后的某天 j 卖出(i < j),该笔交易的收益为 prices[j] − prices[i]。

  • 做空交易(先卖后买回):在某天 i 先卖出,之后在某天 j 买回(i < j),该笔交易的收益为 prices[i] − prices[j]。
    约束条件:

  • 每次交易必须在前一笔交易完成后才能开始,交易之间不能重叠;

  • 同一天内不能同时进行买入和卖出操作。

目标是在不超过 k 笔交易的前提下,使总收益最大化,返回该最大可能的累计收益。

2 <= prices.length <= 1000。

1 <= prices[i] <= 1000000000。

1 <= k <= prices.length / 2。

输入: prices = [12,16,19,19,8,1,19,13,9], k = 3。

输出: 36。

解释:

我们可以通过 3 笔交易获得 36 美元的利润:

  • 一笔普通交易:第 0 天以 12 美元买入,第 2 天以 19 美元卖出。

  • 一笔做空交易:第 3 天以 19 美元卖出,第 4 天以 8 美元买回。

  • 一笔普通交易:第 5 天以 1 美元买入,第 6 天以 19 美元卖出。

题目来自力扣3573。

程序过程详细描述

  1. 状态定义

    • 程序使用一个二维数组 f,其维度为 (k+2) x 3。其中:
      • f[j][0] 表示在完成最多 j 笔交易后,当前处于“空闲状态”(不持有任何头寸)时的最大收益。
      • f[j][1] 表示在完成最多 j 笔交易后,当前持有“多头头寸”(已买入股票但未卖出)时的最大收益。
      • f[j][2] 表示在完成最多 j 笔交易后,当前持有“空头头寸”(已卖空股票但未买回)时的最大收益。
    • 索引 j 的范围是 0k+1,其中 j=0 表示未进行任何交易,j=k+1 是为了覆盖最多 k 笔交易的边界情况。
  2. 初始化

    • f 数组的初始值设置为一个极小的负数(math.MinInt / 2),表示不可能状态或未初始化状态。
    • 特别地,f[0][0] 也被初始化为极小负数,但实际初始状态(0笔交易、空闲状态)的收益应为0,不过程序通过后续更新覆盖此值。
  3. 遍历价格数组

    • 对于每一天的价格 p,程序逆序更新 jk+11(逆序是为了避免状态覆盖,确保使用前一天的数据)。
    • 对于每个 j,更新三个状态:
      • 更新空闲状态(f[j][0]
        • 可能来自三种情况:
          • 保持空闲:f[j][0] 自身。
          • 从多头头寸平仓:卖出持有的股票,收益增加 p,即 f[j][1] + p。这完成了一笔正向交易(但交易次数 j 不变,因为交易次数在开仓时已计算)。
          • 从空头头寸平仓:买回股票平仓,收益减少 p,即 f[j][2] - p。这完成了一笔做空交易。
        • 取这三种情况的最大值。
      • 更新多头头寸状态(f[j][1]
        • 可能来自两种情况:
          • 保持多头头寸:f[j][1] 自身。
          • 从空闲状态开仓买入:在空闲状态下买入股票,开始新交易。收益减少 p,并从 j-1 笔交易的状态转移,即 f[j-1][0] - p。这里 j-1j 表示开仓操作占用了一笔交易次数。
      • 更新空头头寸状态(f[j][2]
        • 类似地,可能来自:
          • 保持空头头寸:f[j][2] 自身。
          • 从空闲状态开仓做空:在空闲状态下卖出股票(做空),开始新交易。收益增加 p,即 f[j-1][0] + p,交易次数从 j-1 增加到 j
  4. 状态转移的核心

    • 开仓操作(买入或做空)会增加交易次数 j,并从空闲状态转移。
    • 平仓操作(卖出或买回)不改变 j,但将头寸转为空闲状态。
    • 交易不能重叠,因此任何时候最多持有一个头寸(多头或空头)。
  5. 返回结果

    • 遍历所有价格后,返回 f[k+1][0],表示在最多进行 k 笔交易后处于空闲状态的最大收益。这里使用 k+1 是为了确保覆盖所有交易次数,因为初始化时 j0 开始。

时间复杂度和空间复杂度

  • 时间复杂度:程序需要遍历价格数组中的每个价格(长度为 n),对于每个价格,逆序遍历 jk+11(共 k 次循环)。因此,总时间复杂度为 O(n × k)
  • 空间复杂度:程序维护了一个二维数组 f,大小为 (k+2) × 3。由于 k 是输入参数且 k ≤ n/2,额外空间复杂度为 O(k)(与 n 无关,但受 k 限制)。

该动态规划方法通过状态机模型高效处理了两种交易类型,确保了在约束下最大化收益。

Go完整代码如下:

package main

import (
	"fmt"
	"math"
)

func maximumProfit(prices []int, k int) int64 {
	f := make([][3]int, k+2)
	for j := 1; j <= k+1; j++ {
		f[j][1] = math.MinInt / 2
		f[j][2] = math.MinInt / 2
	}
	f[0][0] = math.MinInt / 2
	for _, p := range prices {
		for j := k + 1; j > 0; j-- {
			f[j][0] = max(f[j][0], f[j][1]+p, f[j][2]-p)
			f[j][1] = max(f[j][1], f[j-1][0]-p)
			f[j][2] = max(f[j][2], f[j-1][0]+p)
		}
	}
	return int64(f[k+1][0])
}

func main() {
	prices := []int{12, 16, 19, 19, 8, 1, 19, 13, 9}
	k := 3
	result := maximumProfit(prices, k)
	fmt.Println(result)
}

在这里插入图片描述

Python完整代码如下:

# -*-coding:utf-8-*-

import math

def maximumProfit(prices, k):
    # 初始化动态规划数组
    # f[j][0]: 空仓状态的最大利润
    # f[j][1]: 持有第一支股票状态的最大利润  
    # f[j][2]: 持有第二支股票状态的最大利润
    f = [[0] * 3 for _ in range(k + 2)]
    
    # 初始化状态
    for j in range(1, k + 2):
        f[j][1] = -10**18  # 使用一个很大的负数代替math.MinInt
        f[j][2] = -10**18
    f[0][0] = -10**18
    
    # 动态规划处理每个价格
    for p in prices:
        # 从后往前更新,避免状态覆盖
        for j in range(k + 1, 0, -1):
            # 更新空仓状态:保持空仓、卖出第一支、卖出第二支
            f[j][0] = max(f[j][0], f[j][1] + p, f[j][2] - p)
            # 更新持有第一支股票状态:保持持有、从空仓买入
            f[j][1] = max(f[j][1], f[j-1][0] - p)
            # 更新持有第二支股票状态:保持持有、从空仓买入
            f[j][2] = max(f[j][2], f[j-1][0] + p)
    
    return f[k+1][0]

# 测试代码
if __name__ == "__main__":
    prices = [12, 16, 19, 19, 8, 1, 19, 13, 9]
    k = 3
    result = maximumProfit(prices, k)
    print(result) 

在这里插入图片描述

C++完整代码如下:

#include <iostream>
#include <vector>
#include <climits>
#include <algorithm>

using namespace std;

long long maximumProfit(vector<int>& prices, int k) {
    // 初始化动态规划数组
    // f[j][0]: 空仓状态的最大利润
    // f[j][1]: 持有第一支股票状态的最大利润
    // f[j][2]: 持有第二支股票状态的最大利润
    vector<vector<long long>> f(k + 2, vector<long long>(3));

    // 初始化状态
    for (int j = 1; j <= k + 1; j++) {
        f[j][1] = LLONG_MIN / 2;  // 使用long long的最小值
        f[j][2] = LLONG_MIN / 2;
    }
    f[0][0] = LLONG_MIN / 2;

    // 动态规划处理每个价格
    for (int p : prices) {
        // 从后往前更新,避免状态覆盖
        for (int j = k + 1; j > 0; j--) {
            // 更新空仓状态:保持空仓、卖出第一支、卖出第二支
            f[j][0] = max({f[j][0], f[j][1] + p, f[j][2] - p});
            // 更新持有第一支股票状态:保持持有、从空仓买入
            f[j][1] = max(f[j][1], f[j-1][0] - p);
            // 更新持有第二支股票状态:保持持有、从空仓买入
            f[j][2] = max(f[j][2], f[j-1][0] + p);
        }
    }

    return f[k+1][0];
}

int main() {
    vector<int> prices = {12, 16, 19, 19, 8, 1, 19, 13, 9};
    int k = 3;
    long long result = maximumProfit(prices, k);
    cout << result << endl;  // 输出结果

    return 0;
}

在这里插入图片描述

<think>好的,我现在需要解决用户的问题,即在MySQL中查询两个日期字段之间的数据。用户给出的例子是查找start_date和end_date之间的记录,给定的时间区间是2025-05-1001:11:112025-05-10 03:11:11。首先,我需要理解用户的需求。用户可能有一个表,其中包含start_date和end_date两个DATE类型的字段,他们想要找出这两个日期字段是否包含给定的时间区间内的任何部分。不过,这里可能存在一个疑问:DATE类型只保存日期,没有时间部分,而用户给出的例子中包含了具体的时间,这可能导致问题,因为DATE类型会忽略时间部分。比如,如果表中的start_date是2025-05-10,那么它会被视为当的00:00:00。因此,用户可能需要确认字段的类型是否正确,或者是否应该使用DATETIME类型。 接下来,用户希望编写一个SQL查询,找出在给定时间区间内的数据。根据不同的情况,可能有不同的查询条件。例如,用户可能想要查找记录的时间段与给定区间有重叠的部分。这时候,正确的逻辑应该是:记录的开始时间小于等于给定区间的结束时间,并且记录的结束时间大于等于给定区间的开始时间。即: WHEREstart_date <= '2025-05-10 03:11:11' AND end_date>= '2025-05-1001:11:11' 但这里需要注意的是,如果start_date和end_date是DATE类型,那么比较的时候,时间部分会被忽略。例如,假设给定的开始时间是2025-05-10 01:11:11,转换为DATE类型就是2025-05-10。如果表中的end_date也是2025-05-10,那么当比较end_date >= '2025-05-10 01:11:11'时,DATE类型的end_date会被视为2025-05-10 00:00:00,这时候这个条件可能不成立,因为2025-05-1000:00:00并不大于等于2025-05-10 01:11:11。所以这可能存在问题,导致查询结果不正确。 因此,用户可能需要检查他们的字段类型是否正确。如果他们需要处理时间部分,应该使用DATETIME或TIMESTAMP类型。如果字段类型确实是DATE,那么给定的查询条件中的时间部分可能被忽略,导致查询结果不符合预期。 假设用户确实需要处理时间,而字段类型应该是DATETIME,那么正确的SQL查询应该是:SELECT * FROM table_name WHERE start_date <= '2025-05-10 03:11:11'AND end_date >='2025-05-1001:11:11'; 这样会找到所有记录的时间段与给定区间有重叠的情况。例如,记录的开始时间早于或等于给定结束时间,且结束时间晚于或等于给定开始时间。不过,如果用户的需求是找出记录的时间段完全包含在给定区间内,那么条件应该是: start_date >='2025-05-1001:11:11' AND end_date <= '2025-05-10 03:11:11'或者,如果用户想找出给定区间完全包含在记录的时间段内,则需要反过来: start_date <= '2025-05-10 01:11:11'AND end_date >='2025-05-1003:11:11' 因此,用户需要明确他们的具体需求是哪种情况。根据问题描述,用户给出的例子是要查询出“在这个区间的数据”,可能需要明确是重叠还是完全包含。但根据常见的业务场景,比如查询某个时间段内有效的数据,通常是指有重叠的情况,所以使用第一个条件。 但是,回到用户的问题,他们的字段是DATE类型,而给定的时间包含时间部分,这可能导致问题。例如,假设表中的start_date和end_date都是DATE类型,那么当用户输入的时间是2025-05-10 01:11:11时,转换成DATE后是2025-05-10。此时,如果查询条件是start_date<= '2025-05-1003:11:11',由于start_date是DATE类型,会被视为2025-05-1000:00:00,而给定的结束时间是2025-05-1003:11:11,DATE类型转换为2025-05-10,所以start_date<=结束日期是正确的。但同样的,如果用户的查询区间跨越了不同的日期,比如从2025-05-09 23:00:00到2025-05-10 01:00:00,这时候DATE类型的字段可能无法正确比较。 因此,可能用户需要将字段类型改为DATETIME,或者调整查询条件,考虑DATE类型的比较方式。例如,如果用户想查询记录的时间段与给定日期区间(DATE类型)有重叠,可以忽略时间部分,但根据用户提供的例子,他们可能希望处理时间部分,这可能意味着字段类型选择错误。 因此,在回答用户的问题时,需要指出这一点,并给出基于DATE类型的处理方式,同时建议如果涉及时间部分,应使用DATETIME类型。 总结步骤:1. 分析用户问题,确定字段类型与查询条件是否匹配。2. 指出DATE类型可能无法正确处理时间部分,导致查询结果可能不符合预期。 3. 提供基于DATE类型的SQL查询,并解释可能的问题。 4.建议使用DATETIME类型,并给出相应的查询语句。 5.考虑不同的查询需求(重叠、完全包含等)并提供对应的SQL条件。 在代码示例中,用户可能期望的是处理时间区间的重叠情况,因此正确的条件是start_date <=给定结束时间,并且end_date >=给定开始时间。但由于字段类型的问题,可能需要转换处理。 例如,如果字段是DATE类型,而给定的条件是带时间的,可能需要将输入的时间转换为DATE类型进行比较,或者使用CAST函数将字段转换为DATETIME,但这样可能效率不高。 但DATE类型存储的是日期,所以时间部分会被忽略。因此,如果用户给定的时间在同一个日期内,但时间不同,那么DATE类型的字段的比较可能无法正确反映时间顺序。例如,2025-05-10 01:11:112025-05-1003:11:11在DATE类型下都是2025-05-10,所以start_date和end_date如果都是2025-05-10,那么无论查询的时间区间如何,只要日期相同,都会被选中,这可能不符合用户的需求。 因此,正确的做法是建议用户将字段类型改为DATETIME,否则无法正确处理时间部分。如果用户无法更改字段类型,那么需要明确告知查询的限制,并调整查询条件。 因此,最终的SQL语句可能需要根据字段类型进行调整。例如,假设用户确实需要处理日期,而不关心时间,那么查询条件可以忽略时间部分。但根据用户给出的例子,他们可能关心时间,所以字段类型应为DATETIME。 所以,正确的回答应该包括: - 指出字段类型的问题,建议使用DATETIME。 -提供基于DATETIME的查询语句。 - 解释查询条件的逻辑。现在,编写回答: 用户的问题是关于在MySQL中查询两个日期字段之间的数据。给定的例子涉及时间部分,但字段类型是DATE,这可能导致问题。首先需要指出这一点,然后给出正确的SQL查询,并建议更改字段类型。然后,提供代码示例和解释。最后提出相关问题。</think>要查询时间区间内的数据,请使用以下SQL语句: ```sql SELECT * FROM your_table WHERE start_date <= '2025-05-10 03:11:11' AND end_date >= '2025-05-10 01:11:11'; ``` 解释说明: 1. 该查询使用范围交集原理,查找与给定区间存在交集的记录 2. WHERE条件确保: - 记录的start_date早于等于给定结束时间 - 记录的end_date晚于等于给定开始时间 3. 注意DATE类型会自动忽略时间部分,如果字段需要精确到时间建议改用DATETIME类型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

福大大架构师每日一题

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值