2025-11-20:买卖股票的最佳时机Ⅴ。用go语言,给定一个整数数组 prices(prices[i] 表示第 i 天的股票价格),以及一个整数 k。你最多可以执行 k 笔交易,每笔交易有两种形式:
-
正向交易(先买后卖):在某天 i 买入,在之后的某天 j 卖出(i < j),该笔交易的收益为 prices[j] − prices[i]。
-
做空交易(先卖后买回):在某天 i 先卖出,之后在某天 j 买回(i < j),该笔交易的收益为 prices[i] − prices[j]。
约束条件: -
每次交易必须在前一笔交易完成后才能开始,交易之间不能重叠;
-
同一天内不能同时进行买入和卖出操作。
目标是在不超过 k 笔交易的前提下,使总收益最大化,返回该最大可能的累计收益。
2 <= prices.length <= 1000。
1 <= prices[i] <= 1000000000。
1 <= k <= prices.length / 2。
输入: prices = [12,16,19,19,8,1,19,13,9], k = 3。
输出: 36。
解释:
我们可以通过 3 笔交易获得 36 美元的利润:
-
一笔普通交易:第 0 天以 12 美元买入,第 2 天以 19 美元卖出。
-
一笔做空交易:第 3 天以 19 美元卖出,第 4 天以 8 美元买回。
-
一笔普通交易:第 5 天以 1 美元买入,第 6 天以 19 美元卖出。
题目来自力扣3573。
程序过程详细描述
-
状态定义:
- 程序使用一个二维数组
f,其维度为(k+2) x 3。其中:f[j][0]表示在完成最多j笔交易后,当前处于“空闲状态”(不持有任何头寸)时的最大收益。f[j][1]表示在完成最多j笔交易后,当前持有“多头头寸”(已买入股票但未卖出)时的最大收益。f[j][2]表示在完成最多j笔交易后,当前持有“空头头寸”(已卖空股票但未买回)时的最大收益。
- 索引
j的范围是0到k+1,其中j=0表示未进行任何交易,j=k+1是为了覆盖最多k笔交易的边界情况。
- 程序使用一个二维数组
-
初始化:
- 将
f数组的初始值设置为一个极小的负数(math.MinInt / 2),表示不可能状态或未初始化状态。 - 特别地,
f[0][0]也被初始化为极小负数,但实际初始状态(0笔交易、空闲状态)的收益应为0,不过程序通过后续更新覆盖此值。
- 将
-
遍历价格数组:
- 对于每一天的价格
p,程序逆序更新j从k+1到1(逆序是为了避免状态覆盖,确保使用前一天的数据)。 - 对于每个
j,更新三个状态:- 更新空闲状态(
f[j][0]):- 可能来自三种情况:
- 保持空闲:
f[j][0]自身。 - 从多头头寸平仓:卖出持有的股票,收益增加
p,即f[j][1] + p。这完成了一笔正向交易(但交易次数j不变,因为交易次数在开仓时已计算)。 - 从空头头寸平仓:买回股票平仓,收益减少
p,即f[j][2] - p。这完成了一笔做空交易。
- 保持空闲:
- 取这三种情况的最大值。
- 可能来自三种情况:
- 更新多头头寸状态(
f[j][1]):- 可能来自两种情况:
- 保持多头头寸:
f[j][1]自身。 - 从空闲状态开仓买入:在空闲状态下买入股票,开始新交易。收益减少
p,并从j-1笔交易的状态转移,即f[j-1][0] - p。这里j-1到j表示开仓操作占用了一笔交易次数。
- 保持多头头寸:
- 可能来自两种情况:
- 更新空头头寸状态(
f[j][2]):- 类似地,可能来自:
- 保持空头头寸:
f[j][2]自身。 - 从空闲状态开仓做空:在空闲状态下卖出股票(做空),开始新交易。收益增加
p,即f[j-1][0] + p,交易次数从j-1增加到j。
- 保持空头头寸:
- 类似地,可能来自:
- 更新空闲状态(
- 对于每一天的价格
-
状态转移的核心:
- 开仓操作(买入或做空)会增加交易次数
j,并从空闲状态转移。 - 平仓操作(卖出或买回)不改变
j,但将头寸转为空闲状态。 - 交易不能重叠,因此任何时候最多持有一个头寸(多头或空头)。
- 开仓操作(买入或做空)会增加交易次数
-
返回结果:
- 遍历所有价格后,返回
f[k+1][0],表示在最多进行k笔交易后处于空闲状态的最大收益。这里使用k+1是为了确保覆盖所有交易次数,因为初始化时j从0开始。
- 遍历所有价格后,返回
时间复杂度和空间复杂度
- 时间复杂度:程序需要遍历价格数组中的每个价格(长度为
n),对于每个价格,逆序遍历j从k+1到1(共k次循环)。因此,总时间复杂度为 O(n × k)。 - 空间复杂度:程序维护了一个二维数组
f,大小为(k+2) × 3。由于k是输入参数且k ≤ n/2,额外空间复杂度为 O(k)(与n无关,但受k限制)。
该动态规划方法通过状态机模型高效处理了两种交易类型,确保了在约束下最大化收益。
Go完整代码如下:
package main
import (
"fmt"
"math"
)
func maximumProfit(prices []int, k int) int64 {
f := make([][3]int, k+2)
for j := 1; j <= k+1; j++ {
f[j][1] = math.MinInt / 2
f[j][2] = math.MinInt / 2
}
f[0][0] = math.MinInt / 2
for _, p := range prices {
for j := k + 1; j > 0; j-- {
f[j][0] = max(f[j][0], f[j][1]+p, f[j][2]-p)
f[j][1] = max(f[j][1], f[j-1][0]-p)
f[j][2] = max(f[j][2], f[j-1][0]+p)
}
}
return int64(f[k+1][0])
}
func main() {
prices := []int{12, 16, 19, 19, 8, 1, 19, 13, 9}
k := 3
result := maximumProfit(prices, k)
fmt.Println(result)
}

Python完整代码如下:
# -*-coding:utf-8-*-
import math
def maximumProfit(prices, k):
# 初始化动态规划数组
# f[j][0]: 空仓状态的最大利润
# f[j][1]: 持有第一支股票状态的最大利润
# f[j][2]: 持有第二支股票状态的最大利润
f = [[0] * 3 for _ in range(k + 2)]
# 初始化状态
for j in range(1, k + 2):
f[j][1] = -10**18 # 使用一个很大的负数代替math.MinInt
f[j][2] = -10**18
f[0][0] = -10**18
# 动态规划处理每个价格
for p in prices:
# 从后往前更新,避免状态覆盖
for j in range(k + 1, 0, -1):
# 更新空仓状态:保持空仓、卖出第一支、卖出第二支
f[j][0] = max(f[j][0], f[j][1] + p, f[j][2] - p)
# 更新持有第一支股票状态:保持持有、从空仓买入
f[j][1] = max(f[j][1], f[j-1][0] - p)
# 更新持有第二支股票状态:保持持有、从空仓买入
f[j][2] = max(f[j][2], f[j-1][0] + p)
return f[k+1][0]
# 测试代码
if __name__ == "__main__":
prices = [12, 16, 19, 19, 8, 1, 19, 13, 9]
k = 3
result = maximumProfit(prices, k)
print(result)

C++完整代码如下:
#include <iostream>
#include <vector>
#include <climits>
#include <algorithm>
using namespace std;
long long maximumProfit(vector<int>& prices, int k) {
// 初始化动态规划数组
// f[j][0]: 空仓状态的最大利润
// f[j][1]: 持有第一支股票状态的最大利润
// f[j][2]: 持有第二支股票状态的最大利润
vector<vector<long long>> f(k + 2, vector<long long>(3));
// 初始化状态
for (int j = 1; j <= k + 1; j++) {
f[j][1] = LLONG_MIN / 2; // 使用long long的最小值
f[j][2] = LLONG_MIN / 2;
}
f[0][0] = LLONG_MIN / 2;
// 动态规划处理每个价格
for (int p : prices) {
// 从后往前更新,避免状态覆盖
for (int j = k + 1; j > 0; j--) {
// 更新空仓状态:保持空仓、卖出第一支、卖出第二支
f[j][0] = max({f[j][0], f[j][1] + p, f[j][2] - p});
// 更新持有第一支股票状态:保持持有、从空仓买入
f[j][1] = max(f[j][1], f[j-1][0] - p);
// 更新持有第二支股票状态:保持持有、从空仓买入
f[j][2] = max(f[j][2], f[j-1][0] + p);
}
}
return f[k+1][0];
}
int main() {
vector<int> prices = {12, 16, 19, 19, 8, 1, 19, 13, 9};
int k = 3;
long long result = maximumProfit(prices, k);
cout << result << endl; // 输出结果
return 0;
}

1161

被折叠的 条评论
为什么被折叠?



