泰勒级数和幂级数(如何解题)

26.泰勒级数和幂级数(如何解题)

强烈建议先了解泰勒级数传送门:透彻理解泰勒级数

26.1 幂级数的收敛性

26.1.1 收敛半径

幂级数收敛性的三种情况

26.1.2 求收敛半径和收敛区域

1.比式判别法

2.根式判别法


算出极限的结果,其形式为 L ∣ x − a ∣ L|x-a| Lxa


L ≠ 0 L\neq 0 L=0

L ∣ x − a ∣ < 1 , ∣ x − a ∣ < 1 L = R L|x-a|\lt1,|x-a|\lt\frac{1}{L}=R Lxa<1xa<L1=R ,幂级数绝对收敛

L ∣ x − a ∣ > 1 , ∣ x − a ∣ > 1 L = R L|x-a|\gt1,|x-a|\gt\frac{1}{L}=R Lxa>1xa>L1=R ,幂级数发散

L ∣ x − a ∣ = 1 , ∣ x − a ∣ = 1 L = R L|x-a|=1,|x-a|=\frac{1}{L}=R Lxa=1xa=L1=R ,得不到结论


L = 0 L=0 L=0 0 ⋅ ∣ x − a ∣ = 0 0\cdot|x-a|=0 0xa=0 ,收敛半径为 R = 1 L = ∞ R=\frac{1}{L}=\infty R=L1=
不论 x x x 取何值,比式的极限都为0.意味着幂级数对所有的 x x x 值都绝对收敛


L = ∞ L=\infty L= ∞ ⋅ ∣ a − a ∣ = 0 \infty\cdot|a-a|=0 aa=0,收敛半径为 R = 1 L = 0 R=\frac{1}{L}=0 R=L1=0
x = a x=a x=a 时幂级数一定收敛,但对于其他任何 x x x 值都发散


例1:

26.2 合成新的泰勒级数

方法一:直接用公式
方法二:用常见泰勒级数合成新的泰勒级数

常用泰勒级数

26.2.1 代换和泰勒级数

代换时,等式左右两边同时代换

例1:

例2:

代换方法求泰勒多项式,注意阶数

例子:

26.2.2 泰勒级数求导

例子:

26.2.3 泰勒级数求积分

对泰勒级数逐项积分
新的级数和原级数收敛区间一样(收敛区间的端点除外)
若用不定积分,记得加常数

例1:


例2:

26.2.4 泰勒级数相加和相减

26.2.5 泰勒级数相乘

一般只关注级数前面几项,并学会略去无用项
不要把注意力集中在次数大于原函数级数的阶的项

26.2.6 泰勒级数相除

长除法
略掉不关心的项
应该将各项按次数递增的顺序写

例子:

26.3 利用幂级数和泰勒级数求导


例子:

26.4 利用麦克劳林级数求极限

希望消去一些项,且不想让分子或分母为0

例1:

例2:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值