Chapter26:泰勒级数和幂级数(如何解题)
26.泰勒级数和幂级数(如何解题)
强烈建议先了解泰勒级数【传送门:透彻理解泰勒级数】
26.1 幂级数的收敛性
26.1.1 收敛半径
幂级数收敛性的三种情况
26.1.2 求收敛半径和收敛区域
1.比式判别法
2.根式判别法
算出极限的结果,其形式为
L
∣
x
−
a
∣
L|x-a|
L∣x−a∣
若 L ≠ 0 L\neq 0 L=0
L ∣ x − a ∣ < 1 , ∣ x − a ∣ < 1 L = R L|x-a|\lt1,|x-a|\lt\frac{1}{L}=R L∣x−a∣<1,∣x−a∣<L1=R ,幂级数绝对收敛
L ∣ x − a ∣ > 1 , ∣ x − a ∣ > 1 L = R L|x-a|\gt1,|x-a|\gt\frac{1}{L}=R L∣x−a∣>1,∣x−a∣>L1=R ,幂级数发散
L ∣ x − a ∣ = 1 , ∣ x − a ∣ = 1 L = R L|x-a|=1,|x-a|=\frac{1}{L}=R L∣x−a∣=1,∣x−a∣=L1=R ,得不到结论
若
L
=
0
L=0
L=0 (
0
⋅
∣
x
−
a
∣
=
0
0\cdot|x-a|=0
0⋅∣x−a∣=0 ,收敛半径为
R
=
1
L
=
∞
R=\frac{1}{L}=\infty
R=L1=∞ )
不论
x
x
x 取何值,比式的极限都为0.意味着幂级数对所有的
x
x
x 值都绝对收敛
若
L
=
∞
L=\infty
L=∞(
∞
⋅
∣
a
−
a
∣
=
0
\infty\cdot|a-a|=0
∞⋅∣a−a∣=0,收敛半径为
R
=
1
L
=
0
R=\frac{1}{L}=0
R=L1=0 )
当
x
=
a
x=a
x=a 时幂级数一定收敛,但对于其他任何
x
x
x 值都发散
例1:
26.2 合成新的泰勒级数
方法一:直接用公式
方法二:用常见泰勒级数合成新的泰勒级数
常用泰勒级数
26.2.1 代换和泰勒级数
代换时,等式左右两边同时代换
例1:
例2:
代换方法求泰勒多项式,注意阶数
例子:
26.2.2 泰勒级数求导
例子:
26.2.3 泰勒级数求积分
对泰勒级数逐项积分
新的级数和原级数收敛区间一样(收敛区间的端点除外)
若用不定积分,记得加常数
例1:
例2:
26.2.4 泰勒级数相加和相减
26.2.5 泰勒级数相乘
一般只关注级数前面几项,并学会略去无用项
不要把注意力集中在次数大于原函数级数的阶的项
26.2.6 泰勒级数相除
长除法
略掉不关心的项
应该将各项按次数递增的顺序写
例子:
26.3 利用幂级数和泰勒级数求导
例子:
26.4 利用麦克劳林级数求极限
希望消去一些项,且不想让分子或分母为0
例1:
例2: