泰勒级数和幂级数(如何解题)

26.泰勒级数和幂级数(如何解题)

强烈建议先了解泰勒级数传送门:透彻理解泰勒级数

26.1 幂级数的收敛性

26.1.1 收敛半径

幂级数收敛性的三种情况

26.1.2 求收敛半径和收敛区域

1.比式判别法

2.根式判别法


算出极限的结果,其形式为 L ∣ x − a ∣ L|x-a| Lxa


L ≠ 0 L\neq 0 L=0

L ∣ x − a ∣ < 1 , ∣ x − a ∣ < 1 L = R L|x-a|\lt1,|x-a|\lt\frac{1}{L}=R Lxa<1xa<L1=R ,幂级数绝对收敛

L ∣ x − a ∣ > 1 , ∣ x − a ∣ > 1 L = R L|x-a|\gt1,|x-a|\gt\frac{1}{L}=R Lxa>1xa>L1=R ,幂级数发散

L ∣ x − a ∣ = 1 , ∣ x − a ∣ = 1 L = R L|x-a|=1,|x-a|=\frac{1}{L}=R Lxa=1xa=L1=R ,得不到结论


L = 0 L=0 L=0 0 ⋅ ∣ x − a ∣ = 0 0\cdot|x-a|=0 0xa=0 ,收敛半径为 R = 1 L = ∞ R=\frac{1}{L}=\infty R=L1=
不论 x x x 取何值,比式的极限都为0.意味着幂级数对所有的 x x x 值都绝对收敛


L = ∞ L=\infty L= ∞ ⋅ ∣ a − a ∣ = 0 \infty\cdot|a-a|=0 aa=0,收敛半径为 R = 1 L = 0 R=\frac{1}{L}=0 R=L1=0
x = a x=a x=a 时幂级数一定收敛,但对于其他任何 x x x 值都发散


例1:

26.2 合成新的泰勒级数

方法一:直接用公式
方法二:用常见泰勒级数合成新的泰勒级数

常用泰勒级数

26.2.1 代换和泰勒级数

代换时,等式左右两边同时代换

例1:

例2:

代换方法求泰勒多项式,注意阶数

例子:

26.2.2 泰勒级数求导

例子:

26.2.3 泰勒级数求积分

对泰勒级数逐项积分
新的级数和原级数收敛区间一样(收敛区间的端点除外)
若用不定积分,记得加常数

例1:


例2:

26.2.4 泰勒级数相加和相减

26.2.5 泰勒级数相乘

一般只关注级数前面几项,并学会略去无用项
不要把注意力集中在次数大于原函数级数的阶的项

26.2.6 泰勒级数相除

长除法
略掉不关心的项
应该将各项按次数递增的顺序写

例子:

26.3 利用幂级数和泰勒级数求导


例子:

26.4 利用麦克劳林级数求极限

希望消去一些项,且不想让分子或分母为0

例1:

例2:

<think>好的,用户之前问过如何将函数1/(1+z²)展开成泰勒级数,现在他们又问泰勒级数是什么。可能需要从基础开始解释泰勒级数的概念,同时结合之前的例子,让他们更容易理解。 首先,用户可能已经通过之前的回答对泰勒级数有了初步接触,但需要系统的定义。我应该先给出泰勒级数的基本定义,说明它是一个用多项逼近函数的方法,围绕某一点展开。 然后,要区分泰勒级数麦克劳林级数,因为用户之前的问题是在z=0处展开,也就是麦克劳林级数。需要明确两者的区别,麦克劳林是泰勒在原点的情况。 接下来,需要解释泰勒级数的公,包括各项系数的由来,即n阶导数除以n!。这里可以结合之前的例子,比如1/(1+z²),其中奇数阶导数为零,偶数阶导数有特定的模,这样用户可以看到实际应用。 用户可能想知道为什么泰勒级数有效,或者它的应用场景。需要提到它的应用,比如近似计算、解析函数的性质等。同时,收敛性也是一个重点,之前提到过收敛半径,这里可以再次强调,比如在复变函数中收敛半径由奇点决定,比如1/(1+z²)在|z|<1收敛,因为奇点在±i。 可能还需要对比泰勒级数其他展开方法,比如洛朗级数,但用户现在可能只需要泰勒级数的基本信息。另外,用户可能对余项或误差估计感兴趣,但问题没有明确问这个,可以简要提及,但不过多展开。 要确保语言通俗易懂,避免过于数学化的术语,但又要准确。可能需要用例子辅助解释,比如常见的函数如e^x、sinx的泰勒展开,然后联系到用户之前的问题中的1/(1+z²),这样他们能联系起来。 还要注意用户的学习背景,可能是在学习复变函数或高等数学,所以需要适当调整深度。比如,在复分析中,泰勒级数的收敛圆奇点的关系很重要,而实分析中可能更关注区间收敛。 最后,总结泰勒级数的重要性应用,帮助用户形成整体理解。检查是否有遗漏的关键点,比如存在条件(函数需无限可导,解析),或者泰勒级数幂级数的关系。确保回答结构清晰,步骤分明,符合用户之前接受的回答风格。</think>--- ### **泰勒级数的定义** **泰勒级数**(Taylor series)是一种用无限项多项来逼近函数的方法,它将一个光滑函数在某一点 $a$ 附近展开为幂级数。具体形为: $$ f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (z-a)^n, $$ 其中: - $f^{(n)}(a)$ 是函数 $f(z)$ 在 $z=a$ 处的 $n$ 阶导数, - $n!$ 是 $n$ 的阶乘, - $(z-a)^n$ 是 $(z-a)$ 的 $n$ 次幂。 特别地,当 $a=0$ 时,泰勒级数称为**麦克劳林级数**(Maclaurin series)。 --- ### **核心思想** 通过函数在某一点的导数信息,构造一个多项级数,使得: 1. 该级数在 $z=a$ 附近与函数的值高度吻合, 2. 随着项数增加,逼近精度逐渐提高, 3. 在收敛域内,级数等于原函数。 --- ### **关键特性** 1. **局部逼近性** 泰勒级数在展开点 $z=a$ 附近最精确,离 $a$ 越远误差可能越大。 2. **唯一性** 如果函数在 $z=a$ 处解析(无限可导且级数收敛),则其泰勒级数是唯一的。 3. **收敛域** 泰勒级数的收敛范围通常是一个以 $a$ 为中心的圆(复变函数)或区间(实变函数),其半径由最近的奇点决定。 **例如**:您之前展开的 $\frac{1}{1+z^2}$ 在 $|z|<1$ 内收敛,因为它在 $z=\pm i$ 处有奇点。 --- ### **经典例子** 1. **指数函数** $e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \quad (|z| < \infty)$,收敛域为整个复平面。 2. **正弦函数** $\sin z = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!} \quad (|z| < \infty)$. 3. **几何级数** $\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n \quad (|z| < 1)$,这正是您之前问题中展开的逆过程。 --- ### **为什么需要泰勒级数?** 1. **近似计算** 用有限项多项近似复杂函数的值(如计算器计算 $\sin 0.1$)。 2. **分析函数性质** 通过级数项的系数,判断函数的奇偶性、增长速率等。 3. **解微分方程** 将解函数展开为泰勒级数,逐项匹配系数。 4. **复变函数理论** 在复分析中,泰勒展开是研究解析函数的核心工具(如您问题中的 $\frac{1}{1+z^2}$)。 --- ### **注意事项** 1. **收敛性问题** 泰勒级数仅在收敛域内等于原函数,超出范围可能发散。 **例如**:$\frac{1}{1+z^2}$ 的泰勒级数在 $|z| \geq 1$ 时不成立。 2. **函数需解析** 函数必须在展开点无限可导,且余项趋于零(需验证收敛性)。 --- ### **与您之前问题的联系** 在您的问题中,将 $\frac{1}{1+z^2}$ 展开为泰勒级数时: - 利用了**几何级数技巧**(通过变量替换 $r = -z^2$), - 结果 $\sum_{n=0}^{\infty} (-1)^n z^{2n}$ 是典型的麦克劳林级数, - 收敛域 $|z| < 1$ 反映了复平面上奇点 $z = \pm i$ 的影响。 --- ### **总结** 泰勒级数通过“用多项逼近函数”的思想,将复杂的函数转化为易于操作的级数形,是数学分析、物理工程中不可或缺的工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Uncertainty!!

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值