python如何进行向量相似度的index(快速找到相似的向量)

### ANN 近似最近邻向量相似度检索实现方法 #### 1. LSH (局部敏感哈希) 对于高维稀疏向量相似查找,LSH 是一种有效的近似最近邻搜索算法。基本原理在于设计一组特殊的哈希函数簇,使得输入项如果在原始空间中彼此靠近,则有很大概率被映射到相同的桶里;反之亦然。具体来说,在文本处理场景下,假设两篇文档的内容越相似,经由特定哈希运算后的结果也会更趋同[^3]。 ```python import numpy as np from datasketch import MinHash, MinHashLSHForest def create_minhash(data): m = MinHash() for d in data: m.update(d.encode('utf8')) return m forest = MinHashLSHForest(num_perm=128) for i in range(len(documents)): min_hash = create_minhash(documents[i]) forest.add(i, min_hash) query_mh = create_minhash(query_document) result = forest.query(query_mh, num_results=10) ``` 此代码片段展示了如何利用 `datasketch` 库中的 `MinHash` 和 `MinHashLSHForest` 来构建一个简单的 LSH 查询系统。这里先创建了一个森林对象并加入多个最小散列实例作为索引,之后再执行查询操作获取前十个最可能的结果。 #### 2. NSW (Navigable Small World Graphs) 另一种流行的 ANN 实现方式是基于导航小世界图的方法——NSW。这种方法将所有的特征向量构造成一张无向图结构,其中每个顶点代表一个样本点,并存储着与其距离最近的若干邻居的信息。当有一个新的查询到来时,可以从任意位置出发沿着边逐步逼近直至找到最佳匹配项之一[^4]。 ```python import nmslib index = nmslib.init(method='nsw', space='cosinesimil') data_points = [[f1, f2,...], ... ] # 数据集列表形式表示 index.addDataPointBatch(data_points) index.createIndex({'post': 2}, print_progress=True) query_vector = [...] # 待查问向量 neighbours_ids, distances = index.knnQuery(query_vector, k=10) ``` 上述 Python 脚本说明了怎样借助于 NMSLIB 工具包快速搭建起一套支持高效大规模相似性搜索的服务端应用。通过初始化参数配置、批量加载训练数据以及最终发起 knn 请三个步骤即可完成整个流程设置。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值