1. 效果演示

2. 基本概念说明
2.1 音频源节点
2.2 时域图

- 声音信号是一维的时域信号,无法观察出频率随时间的变化规律
- 横轴代表时间, 纵轴是信号的变化(振幅)
2.3 频谱图

- 任何信号(当然要满足一定的数学条件),都可以通过傅立叶变换而分解成一个直流分量(也就是一个常数)和若干个(一般是无穷多个)正弦信号的和
- 每个正弦分量都有自己的频率和幅值,频率值作横轴,幅值作纵轴
3. 案例代码
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>Canvas在音频可视化的应用</title>
</head>
<body>
<canvas></canvas>
<audio src="./1.mp3" controls></audio>
<script>
const audio = document.querySelector('audio')
const canvas = document.querySelector('canvas')
const con = canvas.getContext('2d')
canvas.width = window.innerWidth
canvas.height = window.innerHeight / 2
document.body.style.backgroundColor = '#000000'
let dataArray, analyser
audio.onplay = () => {
const audCon = new AudioContext()
const source = audCon.createMediaElementSource(audio)
analyser = audCon.createAnalyser()
analyser.fftSize = 512
source.connect(analyser)
analyser.connect(audCon.destination)
dataArray = new Uint8Array(analyser.frequencyBinCount)
}
(function draw() {
requestAnimationFrame(draw)
const { width, height } = canvas
con.clearRect(0, 0, width, height)
analyser.getByteFrequencyData(dataArray)
con.fillStyle = 'skyblue'
const len = dataArray.length / 2.5
const barWidth = width / len / 2
for (let i = 0; i < len; i++) {
const data = dataArray[i]
const barHeight = (data / 255) * height
const y = height - barHeight
const x1 = i * barWidth + width / 2
const x2 = width / 2 - (i + 1) * barWidth
con.fillRect(x1, y, barWidth - 2, barHeight)
con.fillRect(x2, y, barWidth - 2, barHeight)
}
})()
</script>
</body>
</html>