【算法】灰狼算法GWO优化支持向量机回归SVR模型


灰狼算法GWO

GWO是一种基于灰狼行为的优化算法,由Mirjalili等人于2014年提出。该算法模拟灰狼群的捕猎行为,通过模拟狼群中的Alpha、Beta、Delta三种角色的行为来实现全局优化,具有收敛速度快、精度高、易于实现等特点。

GWO算法的基本流程

  1. 初始化狼群位置和适应度函数。
  2. 计算每个狼的适应度,并记录Alpha、Beta、Delta狼的位置。
  3. 根据Alpha、Beta、Delta狼的位置更新狼群位置。
  4. 重复步骤2和3,直到达到预设的停止条件。

在更新狼群位置时,GWO算法采用了三种不同的策略:

  1. 狼群中的Alpha狼对其他狼施加影响,使它们朝向Alpha狼的位置移动。
  2. 狼群中的Beta狼对其他狼施加影响,使它们朝向Beta狼的位置移动。
  3. 狼群中的Delta狼对其他狼施加影响,使它们朝向Delta狼的位置移动。

通过这些策略,GWO算法能够在搜索空间中快速地找到全局最优解。

优点

  1. 相对简单
    灰狼算法的原理比较简单,易于理解和实现。
  2. 全局搜索能力强
    灰狼算法在
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

傻傻虎虎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值