今日任务
- 1049.最后一块石头的重量II
- 494.目标和
- 474.一和零
1049.最后一块石头的重量II
题目链接:
https://leetcode.cn/problems/last-stone-weight-ii/description/
题目描述:
有一堆石头,用整数数组 stones
表示。其中 stones[i]
表示第 i
块石头的重量。
每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 x
和 y
,且 x <= y
。那么粉碎的可能结果如下:
- 如果
x == y
,那么两块石头都会被完全粉碎; - 如果
x != y
,那么重量为x
的石头将会完全粉碎,而重量为y
的石头新重量为y-x
。
最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0
。
示例 1:
输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。
示例 2:
输入:stones = [31,26,33,21,40]
输出:5
提示:
1 <= stones.length <= 30
1 <= stones[i] <= 100
题解代码:
class Solution {
public:
//二刷动规复习
int lastStoneWeightII(vector<int>& stones){
int dpSize = 100*30/2+1; //dp数组的大小
vector<int> dp(dpSize,0); //dp数组,大小为 dpSize, 全初始化为0
//dp[j]表示容量为j的背包中能够装的最大价值为dp[j]
int sum = 0; //数组stones里面元素的总和
int target = 0;//= sum/2
for(int i = 0; i < stones.size(); i++){//求sum
sum += stones[i];
}
target = sum/2;//更新target值
for(int i = 0; i < stones.size(); i++){//遍历物品
for(int j = target; j >= stones[i]; j--){//遍历背包
dp[j] = max(dp[j], dp[j-stones[i]]+stones[i]); //前为 不放物品i, 后为放物品i
}
}
return sum-dp[target]-dp[target];
}
//一刷动规
/*
int lastStoneWeightII(vector<int>& stones) {
int dpSize = 100*30/2+1; //dp数组的大小
vector<int> dp(dpSize,0); //dp数组,大小为dpSize,全初始化为0
//dp[j]表示容量为j的背包中能够装的最大价值为dp[j]
int sum = 0; //数组stones里面元素的总和
int target = 0;// = sum/2
for(int i = 0; i < stones.size();i++){//求sum
sum += stones[i];
}
target = sum/2; //更新target值
for(int i = 0; i < stones.size();i++){//遍历物品
for(int j = target; j >= stones[i]; j--){//遍历背包
dp[j] = max(dp[j],dp[j-stones[i]]+stones[i]); //前为不放物品i,后为放
}
}
int res = (sum-dp[target])-dp[target];
return res;
}
*/
};
494.目标和
题目链接:
https://leetcode.cn/problems/target-sum/description/
题目描述:
给你一个整数数组 nums
和一个整数 target
。
向数组中的每个整数前添加 '+'
或 '-'
,然后串联起所有整数,可以构造一个 表达式 :
- 例如,
nums = [2, 1]
,可以在2
之前添加'+'
,在1
之前添加'-'
,然后串联起来得到表达式"+2-1"
。
返回可以通过上述方法构造的、运算结果等于 target
的不同 表达式 的数目。
示例 1:
输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
示例 2:
输入:nums = [1], target = 1
输出:1
提示:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
1000 <= target <= 1000
题解代码:
class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
int sum = 0; //求数组nums中所有元素的和
int bagSize = 0; // = (sum+target)/2 背包的容量
for(int i = 0; i < nums.size(); i++){
sum += nums[i];
}
if(target > sum){ //如果目标总和大于实际总和
return 0;//没有可行方案
}
if((sum+target)%2 == 1){//如果求bagSize时(sum+target)的总和无法整除2
return 0;//没有可行方案
}
bagSize = (sum+target)/2;
if(bagSize<0){ //如果背包容量小于0
return 0;//没有可行方案
}
vector<int> dp(bagSize+1, 0); //dp数组,dp[j]表示装满容量为j的背包最多有dp[j]种方法
dp[0] = 1; //初始化dp数组,考虑nums=[0],target=0,即可想通
for(int i = 0; i < nums.size(); i++){//遍历物品
for(int j = bagSize; j >= nums[i]; j--){ //遍历背包
dp[j] += dp[j-nums[i]];
}
}
return dp[bagSize];
}
};
474.一和零
题目链接:
https://leetcode.cn/problems/ones-and-zeroes/description/
题目描述:
给你一个二进制字符串数组 strs
和两个整数 m
和 n
。
请你找出并返回 strs
的最大子集的长度,该子集中 最多 有 m
个 0
和 n
个 1
。
如果 x
的所有元素也是 y
的元素,集合 x
是集合 y
的 子集 。
示例 1:
输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。
示例 2:
输入:strs = ["10", "0", "1"], m = 1, n = 1
输出:2
解释:最大的子集是 {"0", "1"} ,所以答案是 2 。
提示:
1 <= strs.length <= 600
1 <= strs[i].length <= 100
strs[i]
仅由'0'
和'1'
组成1 <= m, n <= 100
题解代码:
class Solution {
public:
int findMaxForm(vector<string>& strs, int m, int n) {
vector<vector<int>> dp(m+1,vector<int>(n+1,0)); //dp数组,初始化为0
//dp[i][j]表示装满i个0,j个1最多装了dp[i][j]个物品
for(string str:strs){ //遍历物品
int x = 0;//统计每一个字符串0的个数
int y = 0; //统计每一个字符串1的个数
for(char c:str){ //遍历每个字符串
if(c == '0'){
x++;
}
else if(c == '1'){
y++;
}
}
for(int i = m; i >= x; i--){ //遍历背包第一个维度 0的个数
for(int j = n; j >=y;j--){ //遍历背包第二个维度 1的个数
dp[i][j] = max(dp[i-x][j-y]+1,dp[i][j]);
}
}
}
return dp[m][n];
}
};
总结
。。。。。。