day43第九章动态规划(二刷)

文章介绍了使用动态规划方法解决LeetCode上的三道编程题:1049.最后一块石头的重量II,494.目标和,以及474.一和零。每道题都涉及在一定限制条件下找到最优解,通过遍历和构建动态规划数组来找到最大可能的子集或最小剩余重量。
摘要由CSDN通过智能技术生成

今日任务

  • 1049.最后一块石头的重量II
  • 494.目标和
  • 474.一和零

1049.最后一块石头的重量II

题目链接:

https://leetcode.cn/problems/last-stone-weight-ii/description/

题目描述:

有一堆石头,用整数数组 stones 表示。其中 stones[i] 表示第 i 块石头的重量。

每一回合,从中选出任意两块石头,然后将它们一起粉碎。假设石头的重量分别为 xy,且 x <= y。那么粉碎的可能结果如下:

  • 如果 x == y,那么两块石头都会被完全粉碎;
  • 如果 x != y,那么重量为 x 的石头将会完全粉碎,而重量为 y 的石头新重量为 y-x

最后,最多只会剩下一块 石头。返回此石头 最小的可能重量 。如果没有石头剩下,就返回 0

示例 1:

输入:stones = [2,7,4,1,8,1]
输出:1
解释:
组合 2 和 4,得到 2,所以数组转化为 [2,7,1,8,1],
组合 7 和 8,得到 1,所以数组转化为 [2,1,1,1],
组合 2 和 1,得到 1,所以数组转化为 [1,1,1],
组合 1 和 1,得到 0,所以数组转化为 [1],这就是最优值。

示例 2:

输入:stones = [31,26,33,21,40]
输出:5

提示:

  • 1 <= stones.length <= 30
  • 1 <= stones[i] <= 100

题解代码:

class Solution {
public:
    //二刷动规复习
    int lastStoneWeightII(vector<int>& stones){
        int dpSize = 100*30/2+1; //dp数组的大小
        vector<int> dp(dpSize,0); //dp数组,大小为 dpSize, 全初始化为0
                                //dp[j]表示容量为j的背包中能够装的最大价值为dp[j]
        int sum = 0; //数组stones里面元素的总和
        int  target = 0;//= sum/2

        for(int i = 0; i < stones.size(); i++){//求sum
            sum += stones[i];
        }
        target = sum/2;//更新target值

        for(int i = 0; i < stones.size(); i++){//遍历物品
            for(int j = target; j >= stones[i]; j--){//遍历背包 
                dp[j] = max(dp[j], dp[j-stones[i]]+stones[i]); //前为 不放物品i, 后为放物品i

            }

        }
        return sum-dp[target]-dp[target];
    }

    //一刷动规
    /*
    int lastStoneWeightII(vector<int>& stones) {
        int dpSize = 100*30/2+1; //dp数组的大小
        vector<int> dp(dpSize,0); //dp数组,大小为dpSize,全初始化为0
                                    //dp[j]表示容量为j的背包中能够装的最大价值为dp[j]

        int sum = 0; //数组stones里面元素的总和
        int target = 0;// = sum/2

        for(int i = 0; i < stones.size();i++){//求sum
            sum += stones[i];
        }
        target = sum/2; //更新target值

        for(int i = 0; i < stones.size();i++){//遍历物品
            for(int j = target; j >= stones[i]; j--){//遍历背包
                dp[j] = max(dp[j],dp[j-stones[i]]+stones[i]); //前为不放物品i,后为放
            }

        }

        int res = (sum-dp[target])-dp[target];
        return res;
    }
    */
};

494.目标和

题目链接:

https://leetcode.cn/problems/target-sum/description/

题目描述:

给你一个整数数组 nums 和一个整数 target

向数组中的每个整数前添加 '+''-' ,然后串联起所有整数,可以构造一个 表达式

  • 例如,nums = [2, 1] ,可以在 2 之前添加 '+' ,在 1 之前添加 '-' ,然后串联起来得到表达式 "+2-1"

返回可以通过上述方法构造的、运算结果等于 target 的不同 表达式 的数目。

示例 1:

输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3

示例 2:

输入:nums = [1], target = 1
输出:1

提示:

  • 1 <= nums.length <= 20
  • 0 <= nums[i] <= 1000
  • 0 <= sum(nums[i]) <= 1000
  • 1000 <= target <= 1000

题解代码:

class Solution {
public:
    int findTargetSumWays(vector<int>& nums, int target) {
        int sum = 0; //求数组nums中所有元素的和
        int bagSize = 0; // = (sum+target)/2  背包的容量
        for(int i = 0; i < nums.size(); i++){
            sum += nums[i];
        }
        if(target > sum){ //如果目标总和大于实际总和
            return 0;//没有可行方案
        }
        if((sum+target)%2 == 1){//如果求bagSize时(sum+target)的总和无法整除2
            return 0;//没有可行方案
        }
        bagSize = (sum+target)/2;
        if(bagSize<0){ //如果背包容量小于0
            return 0;//没有可行方案
        }

        vector<int> dp(bagSize+1, 0); //dp数组,dp[j]表示装满容量为j的背包最多有dp[j]种方法
        dp[0] = 1; //初始化dp数组,考虑nums=[0],target=0,即可想通

        for(int i = 0; i < nums.size(); i++){//遍历物品
            for(int j = bagSize; j >= nums[i]; j--){ //遍历背包
                dp[j] += dp[j-nums[i]];

            }

        }

        return dp[bagSize];

    }
};

474.一和零

题目链接:

https://leetcode.cn/problems/ones-and-zeroes/description/

题目描述:

给你一个二进制字符串数组 strs 和两个整数 mn

请你找出并返回 strs 的最大子集的长度,该子集中 最多m0n1

如果 x 的所有元素也是 y 的元素,集合 x 是集合 y子集

示例 1:

输入:strs = ["10", "0001", "111001", "1", "0"], m = 5, n = 3
输出:4
解释:最多有 5 个 0 和 3 个 1 的最大子集是 {"10","0001","1","0"} ,因此答案是 4 。
其他满足题意但较小的子集包括 {"0001","1"} 和 {"10","1","0"} 。{"111001"} 不满足题意,因为它含 4 个 1 ,大于 n 的值 3 。

示例 2:

输入:strs = ["10", "0", "1"], m = 1, n = 1
输出:2
解释:最大的子集是 {"0", "1"} ,所以答案是 2 。

提示:

  • 1 <= strs.length <= 600
  • 1 <= strs[i].length <= 100
  • strs[i] 仅由 '0''1' 组成
  • 1 <= m, n <= 100

题解代码:

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        vector<vector<int>> dp(m+1,vector<int>(n+1,0)); //dp数组,初始化为0
                                                    //dp[i][j]表示装满i个0,j个1最多装了dp[i][j]个物品
        for(string str:strs){ //遍历物品
            int x = 0;//统计每一个字符串0的个数
            int y = 0; //统计每一个字符串1的个数
            for(char c:str){ //遍历每个字符串
                if(c == '0'){
                    x++;
                }
                else if(c == '1'){
                    y++;
                }
            }

            for(int i = m; i >= x; i--){ //遍历背包第一个维度  0的个数
                for(int j = n; j >=y;j--){ //遍历背包第二个维度 1的个数
                    dp[i][j] = max(dp[i-x][j-y]+1,dp[i][j]);
                }
            }

        }

        return dp[m][n];
    }
};

总结

。。。。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值