今日任务
- 理论基础
- 509.斐波那契数
- 70.爬楼梯
- 746.使用最小花费爬楼梯
理论基础
什么是动态规划:
动规是由前一个状态推导出来的,而贪心是局部直接选最优的,对于刷题来说就够用了。
动态规划解题步骤:
对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!
- 确定dp数组(dp table)以及下标的含义
- 确定递推公式
- dp数组如何初始化
- 确定遍历顺序
- 举例推导dp数组
动态规划问题如何debug:
写动规题目,代码出问题很正常。
找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的。
509.斐波那契数
题目链接:
https://leetcode.cn/problems/fibonacci-number/description/
题目描述:
斐波那契数 (通常用 F(n)
表示)形成的序列称为 斐波那契数列 。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n
,请计算 F(n)
。
示例 1:
输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3
提示:
0 <= n <= 30
题解代码:
动规五部曲:
这里我们要用一个一维dp数组来保存递归的结果
- 确定dp数组以及下标的含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]
- 确定递推公式
为什么这是一道非常简单的入门题目呢?
因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
- dp数组如何初始化
题目中把如何初始化也直接给我们了,如下:
dp[0] = 0;
dp[1] = 1;
- 确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
- 举例推导dp数组
按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:
0 1 1 2 3 5 8 13 21 34 55
如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。
class Solution {
public:
//二刷复习动态规划
int fib(int n){
if(n == 0 || n == 1){
//处理特殊情况
return n;
}
vector<int> dp(n+1); //dp数组
dp[0] = 0;//初始化dp数组
dp[1] = 1;
for(int i = 2; i <= n; i++){//遍历
dp[i] = dp[i-1] + dp[i-2]; //递推公式
}
return dp[n];
}
//一刷动规解法
/*
int fib(int n) {
if(n==0 || n==1){//处理特殊情况
return n;
}
vector<int> dp(n+1);//dp数组
dp[0] = 0; //初始化dp数组
dp[1] = 1;
for(int i = 2; i <= n; i++){//遍历
dp[i] = dp[i-1] + dp[i-2];//递归公式
}
return dp[n];
}*/
};
70.爬楼梯
题目链接:
https://leetcode.cn/problems/climbing-stairs/description/
题目描述:
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
提示:
1 <= n <= 45
题解代码:
爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。
那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。
所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。
我们来分析一下,动规五部曲:
定义一个一维数组来记录不同楼层的状态
- 确定dp数组以及下标的含义
dp[i]: 爬到第i层楼梯,有dp[i]种方法
- 确定递推公式
如何可以推出dp[i]呢?
从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。
首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。
还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。
那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!
所以dp[i] = dp[i - 1] + dp[i - 2] 。
在推导dp[i]的时候,一定要时刻想着dp[i]的定义,否则容易跑偏。
这体现出确定dp数组以及下标的含义的重要性!
- dp数组如何初始化
在回顾一下dp[i]的定义:爬到第i层楼梯,有dp[i]中方法。
那么i为0,dp[i]应该是多少呢,这个可以有很多解释,但基本都是直接奔着答案去解释的。
例如强行安慰自己爬到第0层,也有一种方法,什么都不做也就是一种方法即:dp[0] = 1,相当于直接站在楼顶。
但总有点牵强的成分。
那还这么理解呢:我就认为跑到第0层,方法就是0啊,一步只能走一个台阶或者两个台阶,然而楼层是0,直接站楼顶上了,就是不用方法,dp[0]就应该是0.
其实这么争论下去没有意义,大部分解释说dp[0]应该为1的理由其实是因为dp[0]=1的话在递推的过程中i从2开始遍历本题就能过,然后就往结果上靠去解释dp[0] = 1。
从dp数组定义的角度上来说,dp[0] = 0 也能说得通。
需要注意的是:题目中说了n是一个正整数,题目根本就没说n有为0的情况。
所以本题其实就不应该讨论dp[0]的初始化!
我相信dp[1] = 1,dp[2] = 2,这个初始化大家应该都没有争议的。
所以我的原则是:不考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。
- 确定遍历顺序
从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的
- 举例推导dp数组
举例当n为5的时候,dp table(dp数组)应该是这样的
如果代码出问题了,就把dp table 打印出来,看看究竟是不是和自己推导的一样。
此时大家应该发现了,这不就是斐波那契数列么!
唯一的区别是,没有讨论dp[0]应该是什么,因为dp[0]在本题没有意义!
class Solution {
public:
//二刷复习动态规划
int climbStairs(int n){
if(n <= 1){
return n;
}
vector<int> dp(n+1); //dp数组,dp[i]代表到第i层有dp[i]种方法
dp[1] = 1;
dp[2] = 2;
for(int i = 3; i <= n; i++){
dp[i] = dp[i-1]+dp[i-2];
}
return dp[n];
}
//一刷动态规划
/*
int climbStairs(int n) {
//再用完全背包的方式做一次
vector<int> dp(n+1,0);//定义dp数组,dp[i]表示爬到有i个台阶的楼顶,有dp[i]种方法
dp[0] = 1; //初始化dp数组,dp[0]是其他数值的基础,所以要是1
for(int i = 1; i <= n;i++){ //遍历背包
for(int j = 1; j <= 2; j++){ //遍历物品,也就是台阶
if(i-j>=0){
dp[i] += dp[i-j];
}
}
}
return dp[n];
/*
if(n <= 1){
return n;
}
vector<int> dp(n+1); //定义dp数组,dp[i]代表到第i层有dp[i]种办法
dp[1] = 1; //初始化dp数组,注意这里不初始化dp[0]
dp[2] = 2;
for(int i = 3; i <= n; i++){//注意i是从3开始的
dp[i] = dp[i-1] + dp[i-2];//递推方程
}
return dp[n];
*/
/* }*/
};
746.使用最小花费爬楼梯
题目链接:
https://leetcode.cn/problems/min-cost-climbing-stairs/description/
题目描述:
给你一个整数数组 cost
,其中 cost[i]
是从楼梯第 i
个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0
或下标为 1
的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
示例 1:
输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。
示例 2:
输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。
提示:
2 <= cost.length <= 1000
0 <= cost[i] <= 999
题解代码:
题目中说 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯” 也就是相当于 跳到 下标 0 或者 下标 1 是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力了。
- 确定dp数组以及下标的含义
使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。
dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。
对于dp数组的定义,大家一定要清晰!
- 确定递推公式
可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。
dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。
dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。
那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?
一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
- dp数组如何初始化
看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。
那么 dp[0] 应该是多少呢? 根据dp数组的定义,到达第0台阶所花费的最小体力为dp[0],那么有同学可能想,那dp[0] 应该是 cost[0],例如 cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 的话,dp[0] 就是 cost[0] 应该是1。
这里就要说明本题力扣为什么改题意,而且修改题意之后 就清晰很多的原因了。
新题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 从 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。
所以初始化 dp[0] = 0,dp[1] = 0;
- 确定遍历顺序
最后一步,递归公式有了,初始化有了,如何遍历呢?
本题的遍历顺序其实比较简单,简单到很多同学都忽略了思考这一步直接就把代码写出来了。
因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。
但是稍稍有点难度的动态规划,其遍历顺序并不容易确定下来。 例如:01背包,都知道两个for循环,一个for遍历物品嵌套一个for遍历背包容量,那么为什么不是一个for遍历背包容量嵌套一个for遍历物品呢? 以及在使用一维dp数组的时候遍历背包容量为什么要倒序呢?
这些都与遍历顺序息息相关。当然背包问题后续「代码随想录」都会重点讲解的!
- 举例推导dp数组
拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:
如果大家代码写出来有问题,就把dp数组打印出来,看看和如上推导的是不是一样的。
class Solution {
public:
//二刷复习动态规划
int minCostClimbingStairs(vector<int>& cost){
vector<int> dp(cost.size()+1); //dp数组,dp[i]代表到达第i层所需要花费的最小花费
dp[0] = 0;
dp[1] = 0;
for(int i = 2; i <= cost.size(); i++){//遍历
dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]); //状态转移方程
}
return dp[cost.size()];
}
//一刷动态规划
/*
int minCostClimbingStairs(vector<int>& cost) {
vector<int> dp(cost.size()+1); //dp数组,dp[i]代表到达第i层所需要的最小花费
dp[0] = 0;//初始化dp数组,到达第0层的最小花费为0
dp[1] = 0; //到达第1层的最小花费也为0
for(int i = 2; i <= cost.size(); i++){
dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]); //状态转移方程
}
return dp[cost.size()];
}
*/
};
总结
工作都找不到,不知道写这有啥意思。可笑。