day38第九章动态规划(二刷)

文章介绍了动态规划的概念,强调了动规五部曲:确定dp数组、初始化、遍历顺序、递推公式和状态返回,并通过斐波那契数、爬楼梯问题及最小花费爬楼梯问题三个实例详细解析了动态规划的解题过程和调试技巧。
摘要由CSDN通过智能技术生成

今日任务

  • 理论基础
  • 509.斐波那契数
  • 70.爬楼梯
  • 746.使用最小花费爬楼梯

理论基础

什么是动态规划:

动规是由前一个状态推导出来的,而贪心是局部直接选最优的,对于刷题来说就够用了。

动态规划解题步骤:

对于动态规划问题,我将拆解为如下五步曲,这五步都搞清楚了,才能说把动态规划真的掌握了!

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

动态规划问题如何debug:

写动规题目,代码出问题很正常。

找问题的最好方式就是把dp数组打印出来,看看究竟是不是按照自己思路推导的。


509.斐波那契数

题目链接:

https://leetcode.cn/problems/fibonacci-number/description/

题目描述:

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

  • 0 <= n <= 30

题解代码:

动规五部曲:

这里我们要用一个一维dp数组来保存递归的结果

  1. 确定dp数组以及下标的含义

dp[i]的定义为:第i个数的斐波那契数值是dp[i]

  1. 确定递推公式

为什么这是一道非常简单的入门题目呢?

因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

  1. dp数组如何初始化

题目中把如何初始化也直接给我们了,如下:

dp[0] = 0;
dp[1] = 1;

  1. 确定遍历顺序

从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

  1. 举例推导dp数组

按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:

0 1 1 2 3 5 8 13 21 34 55

如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。

class Solution {
public:
    //二刷复习动态规划
    int fib(int n){
        if(n == 0 || n == 1){
            //处理特殊情况
            return n;
        }

        vector<int> dp(n+1); //dp数组
        dp[0] = 0;//初始化dp数组
        dp[1] = 1;

        for(int i = 2; i <= n; i++){//遍历
            dp[i] = dp[i-1] + dp[i-2]; //递推公式
            
        }
        return dp[n];
    }

    
    //一刷动规解法
    /*
    int fib(int n) {
        if(n==0 || n==1){//处理特殊情况
            return n;
        }
        
        vector<int> dp(n+1);//dp数组
        dp[0] = 0; //初始化dp数组
        dp[1] = 1;

        for(int i = 2; i <= n; i++){//遍历
            dp[i] = dp[i-1] + dp[i-2];//递归公式

        }
        return dp[n];

    }*/
};

70.爬楼梯

题目链接:

https://leetcode.cn/problems/climbing-stairs/description/

题目描述:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45

题解代码:

爬到第一层楼梯有一种方法,爬到二层楼梯有两种方法。

那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。

所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。

我们来分析一下,动规五部曲:

定义一个一维数组来记录不同楼层的状态

  1. 确定dp数组以及下标的含义

dp[i]: 爬到第i层楼梯,有dp[i]种方法

  1. 确定递推公式

如何可以推出dp[i]呢?

从dp[i]的定义可以看出,dp[i] 可以有两个方向推出来。

首先是dp[i - 1],上i-1层楼梯,有dp[i - 1]种方法,那么再一步跳一个台阶不就是dp[i]了么。

还有就是dp[i - 2],上i-2层楼梯,有dp[i - 2]种方法,那么再一步跳两个台阶不就是dp[i]了么。

那么dp[i]就是 dp[i - 1]与dp[i - 2]之和!

所以dp[i] = dp[i - 1] + dp[i - 2] 。

在推导dp[i]的时候,一定要时刻想着dp[i]的定义,否则容易跑偏。

这体现出确定dp数组以及下标的含义的重要性!

  1. dp数组如何初始化

在回顾一下dp[i]的定义:爬到第i层楼梯,有dp[i]中方法。

那么i为0,dp[i]应该是多少呢,这个可以有很多解释,但基本都是直接奔着答案去解释的。

例如强行安慰自己爬到第0层,也有一种方法,什么都不做也就是一种方法即:dp[0] = 1,相当于直接站在楼顶。

但总有点牵强的成分。

那还这么理解呢:我就认为跑到第0层,方法就是0啊,一步只能走一个台阶或者两个台阶,然而楼层是0,直接站楼顶上了,就是不用方法,dp[0]就应该是0.

其实这么争论下去没有意义,大部分解释说dp[0]应该为1的理由其实是因为dp[0]=1的话在递推的过程中i从2开始遍历本题就能过,然后就往结果上靠去解释dp[0] = 1

从dp数组定义的角度上来说,dp[0] = 0 也能说得通。

需要注意的是:题目中说了n是一个正整数,题目根本就没说n有为0的情况。

所以本题其实就不应该讨论dp[0]的初始化!

我相信dp[1] = 1,dp[2] = 2,这个初始化大家应该都没有争议的。

所以我的原则是:不考虑dp[0]如何初始化,只初始化dp[1] = 1,dp[2] = 2,然后从i = 3开始递推,这样才符合dp[i]的定义。

  1. 确定遍历顺序

从递推公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,遍历顺序一定是从前向后遍历的

  1. 举例推导dp数组

举例当n为5的时候,dp table(dp数组)应该是这样的

https://i-blog.csdnimg.cn/blog_migrate/5f695c9985df4787af674c4bf81adc38.png

如果代码出问题了,就把dp table 打印出来,看看究竟是不是和自己推导的一样。

此时大家应该发现了,这不就是斐波那契数列么!

唯一的区别是,没有讨论dp[0]应该是什么,因为dp[0]在本题没有意义!

class Solution {
public:
    //二刷复习动态规划
    int climbStairs(int n){
        if(n <= 1){
            return n;
        }
        vector<int> dp(n+1); //dp数组,dp[i]代表到第i层有dp[i]种方法
        dp[1] = 1;
        dp[2] = 2;

        for(int i = 3; i <= n; i++){
            dp[i] = dp[i-1]+dp[i-2];
        }
        return dp[n];
    }

    //一刷动态规划 
    /*
    int climbStairs(int n) {
        //再用完全背包的方式做一次 
        vector<int> dp(n+1,0);//定义dp数组,dp[i]表示爬到有i个台阶的楼顶,有dp[i]种方法
        dp[0] = 1; //初始化dp数组,dp[0]是其他数值的基础,所以要是1
        for(int i = 1; i <= n;i++){ //遍历背包
            for(int j = 1; j <= 2; j++){ //遍历物品,也就是台阶
                if(i-j>=0){
                    dp[i] += dp[i-j];
                }
            }
        }

        return  dp[n];

        /*
        if(n <= 1){
            return n; 
        }
        vector<int> dp(n+1); //定义dp数组,dp[i]代表到第i层有dp[i]种办法
        dp[1] = 1;  //初始化dp数组,注意这里不初始化dp[0]
        dp[2] = 2;
        for(int i = 3; i <= n; i++){//注意i是从3开始的
            dp[i] = dp[i-1] + dp[i-2];//递推方程

        }
        return dp[n];
        */

   /* }*/
};

746.使用最小花费爬楼梯

题目链接:

https://leetcode.cn/problems/min-cost-climbing-stairs/description/

题目描述:

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。

提示:

  • 2 <= cost.length <= 1000
  • 0 <= cost[i] <= 999

题解代码:

题目中说 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯” 也就是相当于 跳到 下标 0 或者 下标 1 是不花费体力的, 从 下标 0 下标1 开始跳就要花费体力了。

  1. 确定dp数组以及下标的含义

使用动态规划,就要有一个数组来记录状态,本题只需要一个一维数组dp[i]就可以了。

dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]

对于dp数组的定义,大家一定要清晰!

  1. 确定递推公式

可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]

dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。

dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。

那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?

一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);

  1. dp数组如何初始化

看一下递归公式,dp[i]由dp[i - 1],dp[i - 2]推出,既然初始化所有的dp[i]是不可能的,那么只初始化dp[0]和dp[1]就够了,其他的最终都是dp[0]dp[1]推出。

那么 dp[0] 应该是多少呢? 根据dp数组的定义,到达第0台阶所花费的最小体力为dp[0],那么有同学可能想,那dp[0] 应该是 cost[0],例如 cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] 的话,dp[0] 就是 cost[0] 应该是1。

这里就要说明本题力扣为什么改题意,而且修改题意之后 就清晰很多的原因了。

新题目描述中明确说了 “你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。” 也就是说 从 到达 第 0 个台阶是不花费的,但从 第0 个台阶 往上跳的话,需要花费 cost[0]。

所以初始化 dp[0] = 0,dp[1] = 0;

  1. 确定遍历顺序

最后一步,递归公式有了,初始化有了,如何遍历呢?

本题的遍历顺序其实比较简单,简单到很多同学都忽略了思考这一步直接就把代码写出来了。

因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

但是稍稍有点难度的动态规划,其遍历顺序并不容易确定下来。 例如:01背包,都知道两个for循环,一个for遍历物品嵌套一个for遍历背包容量,那么为什么不是一个for遍历背包容量嵌套一个for遍历物品呢? 以及在使用一维dp数组的时候遍历背包容量为什么要倒序呢?

这些都与遍历顺序息息相关。当然背包问题后续「代码随想录」都会重点讲解的!

  1. 举例推导dp数组

拿示例2:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1] ,来模拟一下dp数组的状态变化,如下:

https://code-thinking-1253855093.file.myqcloud.com/pics/20221026175104.png

如果大家代码写出来有问题,就把dp数组打印出来,看看和如上推导的是不是一样的。

class Solution {
public:
    //二刷复习动态规划
    int minCostClimbingStairs(vector<int>& cost){
        vector<int> dp(cost.size()+1); //dp数组,dp[i]代表到达第i层所需要花费的最小花费
        dp[0] = 0;
        dp[1] = 0;

        for(int i = 2; i <= cost.size(); i++){//遍历
            dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2]); //状态转移方程
        }
        return dp[cost.size()];
    }

    //一刷动态规划
    /*
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size()+1); //dp数组,dp[i]代表到达第i层所需要的最小花费
        dp[0] = 0;//初始化dp数组,到达第0层的最小花费为0
        dp[1] = 0; //到达第1层的最小花费也为0

        for(int i = 2; i <= cost.size(); i++){
            dp[i] = min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2]); //状态转移方程

        }
        return dp[cost.size()];

    }
    */
};

总结

工作都找不到,不知道写这有啥意思。可笑。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值