day45第九章动态规划(二刷)

今日任务

  • 70.爬楼梯(进阶)
  • 322.零钱兑换
  • 279.完全平方数

70.爬楼梯(进阶)

题目链接:

https://leetcode.cn/problems/climbing-stairs/description/

题目描述:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45

题解代码:

class Solution {
public:
    //二刷复习动态规划,用完全背包地方式做一次
    int climbStairs(int n){
        vector<int> dp(n+1, 0); //定义dp数组,dp[i]表示爬到有i个台阶的楼顶,有dp[i]种方法
        dp[0] = 1; //初始化dp数组,dp[0]是其他数值的基础,所以要是1
        for(int i = 1; i <= n; i++){//遍历背包
            for(int j = 1; j <= 2;j++){//遍历物品,也就是台阶
                if(i-j >= 0){
                    dp[i] += dp[i-j];
                }

            }

        }
        return dp[n];

    }

   

    //一刷动态规划 
    /*
    int climbStairs(int n) {
        //再用完全背包的方式做一次 
        vector<int> dp(n+1,0);//定义dp数组,dp[i]表示爬到有i个台阶的楼顶,有dp[i]种方法
        dp[0] = 1; //初始化dp数组,dp[0]是其他数值的基础,所以要是1
        for(int i = 1; i <= n;i++){ //遍历背包
            for(int j = 1; j <= 2; j++){ //遍历物品,也就是台阶
                if(i-j>=0){
                    dp[i] += dp[i-j];
                }
            }
        }

        return  dp[n];

        /*
        if(n <= 1){
            return n; 
        }
        vector<int> dp(n+1); //定义dp数组,dp[i]代表到第i层有dp[i]种办法
        dp[1] = 1;  //初始化dp数组,注意这里不初始化dp[0]
        dp[2] = 2;
        for(int i = 3; i <= n; i++){//注意i是从3开始的
            dp[i] = dp[i-1] + dp[i-2];//递推方程

        }
        return dp[n];
        */

   /* }*/

    //二刷复习动态规划
    //斐波那契数列式完成
    /*
    int climbStairs(int n){
        if(n <= 1){
            return n;
        }
        vector<int> dp(n+1); //dp数组,dp[i]代表到第i层有dp[i]种方法
        dp[1] = 1;
        dp[2] = 2;

        for(int i = 3; i <= n; i++){
            dp[i] = dp[i-1]+dp[i-2];
        }
        return dp[n];
    }
    */
};

322.零钱兑换

题目链接:

https://leetcode.cn/problems/coin-change/description/

题目描述:

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins =[1, 2, 5], amount =11输出:3解释:11 = 5 + 5 + 1

示例 2:

输入:coins =[2], amount =3输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

提示:

  • 1 <= coins.length <= 12
  • 1 <= coins[i] <= 231 - 1
  • 0 <= amount <= 104

题解代码:

class Solution {
public:
    //二刷动规复习
    int coinChange(vector<int>& coins, int amount){
        vector<int> dp(amount+1, INT_MAX); //dp数组,dp[j]表示凑足总数为j所需要的钱币的最少个数为dp[j]
        dp[0] = 0; //初始化dp数组,dp[0]凑足总数为0所需的钱币最少个数为0个

        for(int i = 0; i < coins.size(); i++){//遍历物品
            for(int j = coins[i]; j <= amount; j++){//遍历背包
                if(dp[j-coins[i]] != INT_MAX){
                    dp[j] = min(dp[j],dp[j-coins[i]]+1);
                }

            }

        }
        if(dp[amount] == INT_MAX){
            return -1;
        }
        return dp[amount];
    }

    //一刷动规复习
    /*
    int coinChange(vector<int>& coins, int amount) {
        vector<int> dp(amount+1, INT_MAX); //dp数组,dp[j]表示凑足总数为j所需的钱币的最少个数为dp[j]
        dp[0] = 0;//初始化dp数组,dp[0]凑足总数为0所需的钱币的最少个数为0个

        for(int i = 0; i < coins.size(); i++){//遍历物品
            for(int j = coins[i]; j <= amount; j++){ //遍历背包
                if(dp[j-coins[i]] != INT_MAX){
                    dp[j] = min(dp[j],dp[j-coins[i]]+1);
                }

            }
        }
        if(dp[amount] == INT_MAX){
            return -1;
        }
        return dp[amount];

    }
    */
};

279.完全平方数

题目链接:

https://leetcode.cn/problems/perfect-squares/description/

题目描述:

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量 。

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,149 和 16 都是完全平方数,而 3 和 11 不是。

示例 1:

输入:n =12输出:3
解释:12 = 4 + 4 + 4

示例 2:

输入:n =13输出:2
解释:13 = 4 + 9

提示:

  • 1 <= n <= 104

题解代码:

class Solution {
public:
    //二刷动规复习
    int numSquares(int n){
        vector<int> dp(n+1, INT_MAX); //定义dp数组,dp[j]表示和为j的完全平方数的最小数量dp[j]
        dp[0] = 0; //和为0的完全平方数的最小数量为dp[0]
        for(int i = 0; i <= n; i++){//遍历背包
            for(int j = 1; j*j <= i; j++){//遍历物品
                dp[i] = min(dp[i], dp[i-j*j]+1);

            }

        }
        return dp[n];
    }

    //一刷动规
    /*
    int numSquares(int n) {
        vector<int> dp(n+1,INT_MAX);//定义dp数组,dp[j]表示和为j的完全平方数的最小数量d[j]
        dp[0] = 0; //和为0的完全平方数的最小数量为dp[0]
        for(int i = 0; i <= n; i++){ //遍历背包
            for(int j = 1; j*j <= i; j++){ //遍历物品
                dp[i] = min(dp[i],dp[i-j*j]+1);
            }

        }
        return dp[n];

    }
    */
};

总结

我们知道这是完全背包,

如果求组合数就是外层for循环遍历物品,内层for遍历背包。

如果求排列数就是外层for遍历背包,内层for循环遍历物品。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值