今日任务
- 70.爬楼梯(进阶)
- 322.零钱兑换
- 279.完全平方数
70.爬楼梯(进阶)
题目链接:
https://leetcode.cn/problems/climbing-stairs/description/
题目描述:
假设你正在爬楼梯。需要 n
阶你才能到达楼顶。
每次你可以爬 1
或 2
个台阶。你有多少种不同的方法可以爬到楼顶呢?
示例 1:
输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶
示例 2:
输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶
提示:
1 <= n <= 45
题解代码:
class Solution {
public:
//二刷复习动态规划,用完全背包地方式做一次
int climbStairs(int n){
vector<int> dp(n+1, 0); //定义dp数组,dp[i]表示爬到有i个台阶的楼顶,有dp[i]种方法
dp[0] = 1; //初始化dp数组,dp[0]是其他数值的基础,所以要是1
for(int i = 1; i <= n; i++){//遍历背包
for(int j = 1; j <= 2;j++){//遍历物品,也就是台阶
if(i-j >= 0){
dp[i] += dp[i-j];
}
}
}
return dp[n];
}
//一刷动态规划
/*
int climbStairs(int n) {
//再用完全背包的方式做一次
vector<int> dp(n+1,0);//定义dp数组,dp[i]表示爬到有i个台阶的楼顶,有dp[i]种方法
dp[0] = 1; //初始化dp数组,dp[0]是其他数值的基础,所以要是1
for(int i = 1; i <= n;i++){ //遍历背包
for(int j = 1; j <= 2; j++){ //遍历物品,也就是台阶
if(i-j>=0){
dp[i] += dp[i-j];
}
}
}
return dp[n];
/*
if(n <= 1){
return n;
}
vector<int> dp(n+1); //定义dp数组,dp[i]代表到第i层有dp[i]种办法
dp[1] = 1; //初始化dp数组,注意这里不初始化dp[0]
dp[2] = 2;
for(int i = 3; i <= n; i++){//注意i是从3开始的
dp[i] = dp[i-1] + dp[i-2];//递推方程
}
return dp[n];
*/
/* }*/
//二刷复习动态规划
//斐波那契数列式完成
/*
int climbStairs(int n){
if(n <= 1){
return n;
}
vector<int> dp(n+1); //dp数组,dp[i]代表到第i层有dp[i]种方法
dp[1] = 1;
dp[2] = 2;
for(int i = 3; i <= n; i++){
dp[i] = dp[i-1]+dp[i-2];
}
return dp[n];
}
*/
};
322.零钱兑换
题目链接:
https://leetcode.cn/problems/coin-change/description/
题目描述:
给你一个整数数组 coins
,表示不同面额的硬币;以及一个整数 amount
,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1
。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins =[1, 2, 5], amount =11输出:3解释:11 = 5 + 5 + 1
示例 2:
输入:coins =[2], amount =3输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
提示:
1 <= coins.length <= 12
1 <= coins[i] <= 231 - 1
0 <= amount <= 104
题解代码:
class Solution {
public:
//二刷动规复习
int coinChange(vector<int>& coins, int amount){
vector<int> dp(amount+1, INT_MAX); //dp数组,dp[j]表示凑足总数为j所需要的钱币的最少个数为dp[j]
dp[0] = 0; //初始化dp数组,dp[0]凑足总数为0所需的钱币最少个数为0个
for(int i = 0; i < coins.size(); i++){//遍历物品
for(int j = coins[i]; j <= amount; j++){//遍历背包
if(dp[j-coins[i]] != INT_MAX){
dp[j] = min(dp[j],dp[j-coins[i]]+1);
}
}
}
if(dp[amount] == INT_MAX){
return -1;
}
return dp[amount];
}
//一刷动规复习
/*
int coinChange(vector<int>& coins, int amount) {
vector<int> dp(amount+1, INT_MAX); //dp数组,dp[j]表示凑足总数为j所需的钱币的最少个数为dp[j]
dp[0] = 0;//初始化dp数组,dp[0]凑足总数为0所需的钱币的最少个数为0个
for(int i = 0; i < coins.size(); i++){//遍历物品
for(int j = coins[i]; j <= amount; j++){ //遍历背包
if(dp[j-coins[i]] != INT_MAX){
dp[j] = min(dp[j],dp[j-coins[i]]+1);
}
}
}
if(dp[amount] == INT_MAX){
return -1;
}
return dp[amount];
}
*/
};
279.完全平方数
题目链接:
https://leetcode.cn/problems/perfect-squares/description/
题目描述:
给你一个整数 n
,返回 和为 n
的完全平方数的最少数量 。
完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,1
、4
、9
和 16
都是完全平方数,而 3
和 11
不是。
示例 1:
输入:n =12输出:3
解释:12 = 4 + 4 + 4
示例 2:
输入:n =13输出:2
解释:13 = 4 + 9
提示:
1 <= n <= 104
题解代码:
class Solution {
public:
//二刷动规复习
int numSquares(int n){
vector<int> dp(n+1, INT_MAX); //定义dp数组,dp[j]表示和为j的完全平方数的最小数量dp[j]
dp[0] = 0; //和为0的完全平方数的最小数量为dp[0]
for(int i = 0; i <= n; i++){//遍历背包
for(int j = 1; j*j <= i; j++){//遍历物品
dp[i] = min(dp[i], dp[i-j*j]+1);
}
}
return dp[n];
}
//一刷动规
/*
int numSquares(int n) {
vector<int> dp(n+1,INT_MAX);//定义dp数组,dp[j]表示和为j的完全平方数的最小数量d[j]
dp[0] = 0; //和为0的完全平方数的最小数量为dp[0]
for(int i = 0; i <= n; i++){ //遍历背包
for(int j = 1; j*j <= i; j++){ //遍历物品
dp[i] = min(dp[i],dp[i-j*j]+1);
}
}
return dp[n];
}
*/
};
总结
我们知道这是完全背包,
如果求组合数就是外层for循环遍历物品,内层for遍历背包。
如果求排列数就是外层for遍历背包,内层for循环遍历物品。