deeplearning.22 改善深度神经网络实践

初始化参数的三种方法

首先下载本次实践所需要的数据集和必要文件。(下载链接)放在下边建立的工程文件夹内。
在这里插入图片描述
接着打开pycharm,然后新建一个工程叫改善神经网络,随后新建一个python文件,叫init.py。导入相关库和数据集,使用了三种初始化方法,分别是零初始化、随机初始化、和He初始化。

零初始化 :在输入参数中设置initialization = "zeros"。
随机初始化 :在输入参数中设置initialization = "random"
He初始化 :在输入参数中设置initialization = "he"

最终三种初始化方法的代码如下,可以取消某种方法下的,训练模型代码的注释,来查看该方法的训练效果。这里只展示最后一种He初始化的效果。

# 导入所需要的库和数据集
import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import init_utils   #第一部分,初始化
import reg_utils    #第二部分,正则化
import gc_utils     #第三部分,梯度校验
from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation
from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec

# set default size of plots(设置绘图)
plt.rcParams['figure.figsize'] = (7.0, 4.0)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
# 读取并绘制数据
train_X, train_Y, test_X, test_Y = load_dataset()
#绘图显示
# plt.show()

# 定义神经网络模型
def model(X, Y, learning_rate=0.01, num_iterations=15000, print_cost=True, initialization="he", is_polt=True):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0 | 1】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代1000次打印一次
        initialization - 字符串类型,初始化的类型【"zeros" | "random" | "he"】
        is_polt - 是否绘制梯度下降的曲线图
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 10, 5, 1]

    # 选择初始化参数的类型
    if initialization == "zeros":
        parameters = initialize_parameters_zeros(layers_dims)
    elif initialization == "random":
        parameters = initialize_parameters_random(layers_dims)
    elif initialization == "he":
        parameters = initialize_parameters_he(layers_dims)
    else:
        print("错误的初始化参数!程序退出")
        exit

    # 开始学习
    for i in range(0, num_iterations):
        # 前向传播
        a3, cache = init_utils.forward_propagation(X, parameters)

        # 计算成本
        cost = init_utils.compute_loss(a3, Y)

        # 反向传播
        grads = init_utils.backward_propagation(X, Y, cache)

        # 更新参数
        parameters = init_utils.update_parameters(parameters, grads, learning_rate)

        # 记录成本
        if i % 1000 == 0:
            costs.append(cost)
            # 打印成本
            if print_cost:
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    # 学习完毕,绘制成本曲线
    if is_polt:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (per hundreds)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    # 返回学习完毕后的参数
    return parameters


# 参数全部初始化为0
def initialize_parameters_zeros(layers_dims):
    """
    将模型的参数全部设置为0

    参数:
        layers_dims - 列表,模型的层数和对应每一层的节点的数量
    返回
        parameters - 包含了所有W和b的字典
            W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0])
            b1 - 偏置向量,维度为(layers_dims[1],1)
            ···
            WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1])
            bL - 偏置向量,维度为(layers_dims[L],1)
    """
    parameters = {}

    L = len(layers_dims)  # 网络层数

    for l in range(1, L):
        parameters["W" + str(l)] = np.zeros((layers_dims[l], layers_dims[l - 1]))
        parameters["b" + str(l)] = np.zeros((layers_dims[l], 1))

    assert (parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l - 1]))
    assert (parameters["b" + str(l)].shape == (layers_dims[l], 1))

    return parameters

# 测试查看是否都为0
# parameters = initialize_parameters_zeros([3,2,1])
# print("W1 = " + str(parameters["W1"]))
# print("b1 = " + str(parameters["b1"]))
# print("W2 = " + str(parameters["W2"]))
# print("b2 = " + str(parameters["b2"]))

# 训练模型使用零初始化
#parameters = model(train_X, train_Y, initialization="zeros",is_polt=True)


#查看预测的结果
#print ("训练集:")
#predictions_train = init_utils.predict(train_X, train_Y, parameters)
#print ("测试集:")
#predictions_test = init_utils.predict(test_X, test_Y, parameters)

# 参数随机初始化
def initialize_parameters_random(layers_dims):
    """
    参数:
        layers_dims - 列表,模型的层数和对应每一层的节点的数量
    返回
        parameters - 包含了所有W和b的字典
            W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0])
            b1 - 偏置向量,维度为(layers_dims[1],1)
            ···
            WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1])
            b1 - 偏置向量,维度为(layers_dims[L],1)
            将权重初始化为较大的随机值(按*10缩放),并将偏差设为0。
            将 np.random.randn(..,..) * 10用于权重,将np.zeros((.., ..))用于偏差
    """

    parameters = {}
    L = len(layers_dims)  # 层数

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10  # 使用10倍缩放
        parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))

        # 使用断言确保我的数据格式是正确的
        assert (parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l - 1]))
        assert (parameters["b" + str(l)].shape == (layers_dims[l], 1))

    return parameters

# 测试随机初始化的参数输出
# parameters = initialize_parameters_random([3, 2, 1])
# print("W1 = " + str(parameters["W1"]))
# print("b1 = " + str(parameters["b1"]))
# print("W2 = " + str(parameters["W2"]))
# print("b2 = " + str(parameters["b2"]))

#使用随机初始化训练模型
#parameters = model(train_X, train_Y, initialization = "random",is_polt=True)

#输出训练集和测试集的准确率
# print("训练集:")
# predictions_train = init_utils.predict(train_X, train_Y, parameters)
# print("测试集:")
# predictions_test = init_utils.predict(test_X, test_Y, parameters)

# 查看对图的分类结果是怎么样的
# plt.title("Model with large random initialization")
# axes = plt.gca()
# axes.set_xlim([-1.5, 1.5])
# axes.set_ylim([-1.5, 1.5])
# init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)


# He 初始化,根据He等人的论文
def initialize_parameters_he(layers_dims):
    """
    参数:
        layers_dims - 列表,模型的层数和对应每一层的节点的数量
    返回
        parameters - 包含了所有W和b的字典
            W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0])
            b1 - 偏置向量,维度为(layers_dims[1],1)
            ···
            WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1])
            b1 - 偏置向量,维度为(layers_dims[L],1)
    """

    np.random.seed(3)  # 指定随机种子
    parameters = {}
    L = len(layers_dims)  # 层数

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / layers_dims[l - 1])
        parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))

        # 使用断言确保我的数据格式是正确的
        assert (parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l - 1]))
        assert (parameters["b" + str(l)].shape == (layers_dims[l], 1))

    return parameters

# 训练模型并输出模型的准确率
parameters = model(train_X, train_Y, initialization = "he",is_polt=True)
#
#
print("训练集:")
predictions_train = init_utils.predict(train_X, train_Y, parameters)
print("测试集:")
init_utils.predictions_test = init_utils.predict(test_X, test_Y, parameters)

# 绘制一下预测的图的情况
plt.title("Model with He initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])
init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)

初始加载的数据展示如下,
在这里插入图片描述
使用He的方法,成本函数J如下
在这里插入图片描述
最后的分类效果
在这里插入图片描述

初始化权重参数完整代码

# 导入所需要的库和数据集
import numpy as np
import matplotlib.pyplot as plt
import sklearn
import sklearn.datasets
import init_utils   #第一部分,初始化
import reg_utils    #第二部分,正则化
import gc_utils     #第三部分,梯度校验
from init_utils import sigmoid, relu, compute_loss, forward_propagation, backward_propagation
from init_utils import update_parameters, predict, load_dataset, plot_decision_boundary, predict_dec

# set default size of plots(设置绘图)
plt.rcParams['figure.figsize'] = (7.0, 4.0)
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
# 读取并绘制数据
train_X, train_Y, test_X, test_Y = load_dataset()
#绘图显示
plt.show()

# 定义神经网络模型
def model(X, Y, learning_rate=0.01, num_iterations=15000, print_cost=True, initialization="he", is_polt=True):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0 | 1】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代1000次打印一次
        initialization - 字符串类型,初始化的类型【"zeros" | "random" | "he"】
        is_polt - 是否绘制梯度下降的曲线图
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 10, 5, 1]

    # 选择初始化参数的类型
    if initialization == "zeros":
        parameters = initialize_parameters_zeros(layers_dims)
    elif initialization == "random":
        parameters = initialize_parameters_random(layers_dims)
    elif initialization == "he":
        parameters = initialize_parameters_he(layers_dims)
    else:
        print("错误的初始化参数!程序退出")
        exit

    # 开始学习
    for i in range(0, num_iterations):
        # 前向传播
        a3, cache = init_utils.forward_propagation(X, parameters)

        # 计算成本
        cost = init_utils.compute_loss(a3, Y)

        # 反向传播
        grads = init_utils.backward_propagation(X, Y, cache)

        # 更新参数
        parameters = init_utils.update_parameters(parameters, grads, learning_rate)

        # 记录成本
        if i % 1000 == 0:
            costs.append(cost)
            # 打印成本
            if print_cost:
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    # 学习完毕,绘制成本曲线
    if is_polt:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (per hundreds)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    # 返回学习完毕后的参数
    return parameters


# 参数全部初始化为0
def initialize_parameters_zeros(layers_dims):
    """
    将模型的参数全部设置为0

    参数:
        layers_dims - 列表,模型的层数和对应每一层的节点的数量
    返回
        parameters - 包含了所有W和b的字典
            W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0])
            b1 - 偏置向量,维度为(layers_dims[1],1)
            ···
            WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1])
            bL - 偏置向量,维度为(layers_dims[L],1)
    """
    parameters = {}

    L = len(layers_dims)  # 网络层数

    for l in range(1, L):
        parameters["W" + str(l)] = np.zeros((layers_dims[l], layers_dims[l - 1]))
        parameters["b" + str(l)] = np.zeros((layers_dims[l], 1))

    assert (parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l - 1]))
    assert (parameters["b" + str(l)].shape == (layers_dims[l], 1))

    return parameters

# 测试查看是否都为0
# parameters = initialize_parameters_zeros([3,2,1])
# print("W1 = " + str(parameters["W1"]))
# print("b1 = " + str(parameters["b1"]))
# print("W2 = " + str(parameters["W2"]))
# print("b2 = " + str(parameters["b2"]))

# 训练模型使用零初始化
#parameters = model(train_X, train_Y, initialization="zeros",is_polt=True)


#查看预测的结果
#print ("训练集:")
#predictions_train = init_utils.predict(train_X, train_Y, parameters)
#print ("测试集:")
#predictions_test = init_utils.predict(test_X, test_Y, parameters)

# 参数随机初始化
def initialize_parameters_random(layers_dims):
    """
    参数:
        layers_dims - 列表,模型的层数和对应每一层的节点的数量
    返回
        parameters - 包含了所有W和b的字典
            W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0])
            b1 - 偏置向量,维度为(layers_dims[1],1)
            ···
            WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1])
            b1 - 偏置向量,维度为(layers_dims[L],1)
            将权重初始化为较大的随机值(按*10缩放),并将偏差设为0。
            将 np.random.randn(..,..) * 10用于权重,将np.zeros((.., ..))用于偏差
    """

    parameters = {}
    L = len(layers_dims)  # 层数

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * 10  # 使用10倍缩放
        parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))

        # 使用断言确保我的数据格式是正确的
        assert (parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l - 1]))
        assert (parameters["b" + str(l)].shape == (layers_dims[l], 1))

    return parameters

# 测试随机初始化的参数输出
# parameters = initialize_parameters_random([3, 2, 1])
# print("W1 = " + str(parameters["W1"]))
# print("b1 = " + str(parameters["b1"]))
# print("W2 = " + str(parameters["W2"]))
# print("b2 = " + str(parameters["b2"]))

#使用随机初始化训练模型
#parameters = model(train_X, train_Y, initialization = "random",is_polt=True)

#输出训练集和测试集的准确率
# print("训练集:")
# predictions_train = init_utils.predict(train_X, train_Y, parameters)
# print("测试集:")
# predictions_test = init_utils.predict(test_X, test_Y, parameters)

# 查看对图的分类结果是怎么样的
# plt.title("Model with large random initialization")
# axes = plt.gca()
# axes.set_xlim([-1.5, 1.5])
# axes.set_ylim([-1.5, 1.5])
# init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)


# He 初始化,根据He等人的论文
def initialize_parameters_he(layers_dims):
    """
    参数:
        layers_dims - 列表,模型的层数和对应每一层的节点的数量
    返回
        parameters - 包含了所有W和b的字典
            W1 - 权重矩阵,维度为(layers_dims[1], layers_dims[0])
            b1 - 偏置向量,维度为(layers_dims[1],1)
            ···
            WL - 权重矩阵,维度为(layers_dims[L], layers_dims[L -1])
            b1 - 偏置向量,维度为(layers_dims[L],1)
    """

    np.random.seed(3)  # 指定随机种子
    parameters = {}
    L = len(layers_dims)  # 层数

    for l in range(1, L):
        parameters['W' + str(l)] = np.random.randn(layers_dims[l], layers_dims[l - 1]) * np.sqrt(2 / layers_dims[l - 1])
        parameters['b' + str(l)] = np.zeros((layers_dims[l], 1))

        # 使用断言确保我的数据格式是正确的
        assert (parameters["W" + str(l)].shape == (layers_dims[l], layers_dims[l - 1]))
        assert (parameters["b" + str(l)].shape == (layers_dims[l], 1))

    return parameters

# 训练模型并输出模型的准确率
parameters = model(train_X, train_Y, initialization = "he",is_polt=True)
#
#
print("训练集:")
predictions_train = init_utils.predict(train_X, train_Y, parameters)
print("测试集:")
init_utils.predictions_test = init_utils.predict(test_X, test_Y, parameters)

# 绘制一下预测的图的情况
plt.title("Model with He initialization")
axes = plt.gca()
axes.set_xlim([-1.5, 1.5])
axes.set_ylim([-1.5, 1.5])
init_utils.plot_decision_boundary(lambda x: init_utils.predict_dec(parameters, x.T), train_X, train_Y)


小结

  • 使用零初始化,该模型预测的每个示例都为0。通常,将所有权重初始化为零会导致网络无法打破对称性。 这意味着每一层中的每个神经元都将学习相同的东西。所以权重w应该随机初始化,偏差b初始化为0是可以的
  • 使用随机初始化,将权重初始化为非常大的随机值效果不佳。初始化为较小的随机值会更好。重要的问题是:这些随机值应为多小?
  • 尝试一下“He 初始化”,该名称以He等人的名字命名(类似于“Xavier初始化”,但Xavier初始化使用比例因子 sqrt(1./layers_dims[l-1])来表示权重,He初始化是sqrt(1./layers_dims[l-1])
  • 不同的初始化会导致不同的结果,随机初始化用于打破对称性,并确保不同的隐藏单元可以学习不同的东西,不要初始化为太大的值,初始化对于带有ReLU激活的网络非常有效。

正则化

正则化解决训练数据不够大时,造成的过拟合现象。
继续在该工程目录下新建python文件,zheng_ze.py,所需的数据和库还是同上。第一步先在代码中导入库和数据。

import numpy as np
import matplotlib.pyplot as plt
from reg_utils import sigmoid, relu, plot_decision_boundary, initialize_parameters, load_2D_dataset, predict_dec
from reg_utils import compute_cost, predict, forward_propagation, backward_propagation, update_parameters
import sklearn
import sklearn.datasets
import scipy.io
from testCases import *


plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

train_X, train_Y, test_X, test_Y = load_2D_dataset()
# 展示数据
plt.show()

我们的数据集是有关足球比赛的,目的是预测守门员把球往哪个点发,能让本国的球员可以接住。数据集展示如下,紫色的点是能让本国球员接住的点,红色是被对手接住的点。
在这里插入图片描述

使用非正则化模型

import numpy as np
import matplotlib.pyplot as plt
import reg_utils
from reg_utils import sigmoid, relu, plot_decision_boundary, initialize_parameters, load_2D_dataset, predict_dec
from reg_utils import compute_cost, predict, forward_propagation, backward_propagation, update_parameters
import sklearn
import sklearn.datasets
import scipy.io
from testCases import *


plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

train_X, train_Y, test_X, test_Y = load_2D_dataset()
plt.show()

# 定义我们的模型
def model(X, Y, learning_rate=0.3, num_iterations=30000, print_cost=True, is_plot=True, lambd=0, keep_prob=1):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0(蓝色) | 1(红色)】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代10000次打印一次,但是每1000次记录一个成本值
        is_polt - 是否绘制梯度下降的曲线图
        lambd - 正则化的超参数,实数,将lambd输入设置为非零值,就是启用正则化,反之则是关闭正则化
        我们使用“lambd”而不是“lambda”,因为“lambda”是Python中的保留关键字
        keep_prob - 随机删除节点的概率,开启正则化时,设置为小于1的值。
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]

    # 初始化参数
    parameters = reg_utils.initialize_parameters(layers_dims)

    # 开始学习
    for i in range(0, num_iterations):
        # 前向传播
        ##是否随机删除节点
        if keep_prob == 1:
            ###不随机删除节点
            a3, cache = reg_utils.forward_propagation(X, parameters)
        elif keep_prob < 1:
            ###随机删除节点
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
        else:
            print("keep_prob参数错误!程序退出。")
            exit

        # 计算成本
        ## 是否使用二范数
        if lambd == 0:
            ###不使用L2正则化
            cost = reg_utils.compute_cost(a3, Y)
        else:
            ###使用L2正则化
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        # 反向传播
        ##可以同时使用L2正则化和随机删除节点,但是本次实验不同时使用。
        assert (lambd == 0 or keep_prob == 1)

        ##两个参数的使用情况
        if (lambd == 0 and keep_prob == 1):
            ### 不使用L2正则化和不使用随机删除节点
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0:
            ### 使用L2正则化,不使用随机删除节点
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            ### 使用随机删除节点,不使用L2正则化
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # 更新参数
        parameters = reg_utils.update_parameters(parameters, grads, learning_rate)

        # 记录并打印成本
        if i % 1000 == 0:
            ## 记录成本
            costs.append(cost)
            if (print_cost and i % 10000 == 0):
                # 打印成本
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    # 是否绘制成本曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (x1,000)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    # 返回学习后的参数
    return parameters

# 不使用正则化 进训练 并展示准确率
parameters = model(train_X, train_Y,is_plot=True)
print("训练集:")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("测试集:")
predictions_test = reg_utils.predict(test_X, test_Y, parameters)

# 数据的预测结果
plt.title("Model without regularization")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)

在这里插入图片描述
可以看到训练精度为94.8%,而测试精度为91.5%
在这里插入图片描述
由下图可以看到,非正则化模型显然过度拟合了训练集,拟合了一些噪声点!
在这里插入图片描述

使用L2正则化

使用L2正则化的损失函数需要修改,如下所示

J 正 则 化 = − 1 m ∑ i = 1 m ( y ( i ) log ⁡ ( a [ L ] ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − a [ L ] ( i ) ) ) ⏟ cross-entropy cost + 1 m λ 2 ∑ l ∑ k ∑ j W k , j [ l ] 2 ⏟ L2 正则化成本 (2) J_{正则化} = \small \underbrace{-\frac{1}{m} \sum\limits_{i = 1}^{m} \large{(}\small y^{(i)}\log\left(a^{[L](i)}\right) + (1-y^{(i)})\log\left(1- a^{[L](i)}\right) \large{)} }_\text{cross-entropy cost} + \underbrace{\frac{1}{m} \frac{\lambda}{2} \sum\limits_l\sum\limits_k\sum\limits_j W_{k,j}^{[l]2} }_\text{L2 正则化成本} \tag{2} J=cross-entropy cost m1i=1m(y(i)log(a[L](i))+(1y(i))log(1a[L](i)))+L2 正则化成本 m12λlkjWk,j[l]2(2)
计算 ∑ k ∑ j W k , j [ l ] 2 \sum\limits_k\sum\limits_j W_{k,j}^{[l]2} kjWk,j[l]2的代码为np.sum(np.square(Wl))
注意:必须对 W [ 1 ] W^{[1]} W[1] W [ 2 ] W^{[2]} W[2] W [ 3 ] W^{[3]} W[3]进行该操作,然后将三个项目相加并乘以 1 m λ 2 \frac{1}{m}\frac{\lambda}{2} m12λ

# L2正则化的成本函数计算
def compute_cost_with_regularization(A3, Y, parameters, lambd):
    """
    实现公式2的L2正则化计算成本

    参数:
        A3 - 正向传播的输出结果,维度为(输出节点数量,训练/测试的数量)
        Y - 标签向量,与数据一一对应,维度为(输出节点数量,训练/测试的数量)
        parameters - 包含模型学习后的参数的字典
    返回:
        cost - 使用公式2计算出来的正则化损失的值

    """
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    W3 = parameters["W3"]

    cross_entropy_cost = reg_utils.compute_cost(A3, Y)

    L2_regularization_cost = lambd * (np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3))) / (2 * m)

    cost = cross_entropy_cost + L2_regularization_cost

    return cost

因为改变了成本函数J,所以后向传播也要重新定义。代码如下
正则化部分的梯度计算公式 d d W ( 1 2 λ m W 2 ) = λ m W \frac{d}{dW} ( \frac{1}{2}\frac{\lambda}{m} W^2) = \frac{\lambda}{m} W dWd(21mλW2)=mλW

def backward_propagation_with_regularization(X, Y, cache, lambd):
    """
    实现我们添加了L2正则化的模型的后向传播。

    参数:
        X - 输入数据集,维度为(输入节点数量,数据集里面的数量)
        Y - 标签,维度为(输出节点数量,数据集里面的数量)
        cache - 来自forward_propagation()的cache输出
        lambda - regularization超参数,实数

    返回:
        gradients - 一个包含了每个参数、激活值和预激活值变量的梯度的字典
    """

    m = X.shape[1]

    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y

    dW3 = (1 / m) * np.dot(dZ3, A2.T) + ((lambd * W3) / m)
    db3 = (1 / m) * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = (1 / m) * np.dot(dZ2, A1.T) + ((lambd * W2) / m)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = (1 / m) * np.dot(dZ1, X.T) + ((lambd * W1) / m)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients

现在我们使用L2正则化训练模型,并输出准确度,成本函数图像J,以及预测分类的结果。

import numpy as np
import matplotlib.pyplot as plt
import reg_utils
from reg_utils import sigmoid, relu, plot_decision_boundary, initialize_parameters, load_2D_dataset, predict_dec
from reg_utils import compute_cost, predict, forward_propagation, backward_propagation, update_parameters
import sklearn
import sklearn.datasets
import scipy.io
from testCases import *


plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

train_X, train_Y, test_X, test_Y = load_2D_dataset()
plt.show()

# 定义我们的模型
def model(X, Y, learning_rate=0.3, num_iterations=30000, print_cost=True, is_plot=True, lambd=0, keep_prob=1):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0(蓝色) | 1(红色)】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代10000次打印一次,但是每1000次记录一个成本值
        is_polt - 是否绘制梯度下降的曲线图
        lambd - 正则化的超参数,实数,将lambd输入设置为非零值,就是启用正则化,反之则是关闭正则化
        我们使用“lambd”而不是“lambda”,因为“lambda”是Python中的保留关键字
        keep_prob - 随机删除节点的概率,开启正则化时,设置为小于1的值。
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]

    # 初始化参数
    parameters = reg_utils.initialize_parameters(layers_dims)

    # 开始学习
    for i in range(0, num_iterations):
        # 前向传播
        ##是否随机删除节点
        if keep_prob == 1:
            ###不随机删除节点
            a3, cache = reg_utils.forward_propagation(X, parameters)
        elif keep_prob < 1:
            ###随机删除节点
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
        else:
            print("keep_prob参数错误!程序退出。")
            exit

        # 计算成本
        ## 是否使用二范数
        if lambd == 0:
            ###不使用L2正则化
            cost = reg_utils.compute_cost(a3, Y)
        else:
            ###使用L2正则化
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        # 反向传播
        ##可以同时使用L2正则化和随机删除节点,但是本次实验不同时使用。
        assert (lambd == 0 or keep_prob == 1)

        ##两个参数的使用情况
        if (lambd == 0 and keep_prob == 1):
            ### 不使用L2正则化和不使用随机删除节点
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0:
            ### 使用L2正则化,不使用随机删除节点
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            ### 使用随机删除节点,不使用L2正则化
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # 更新参数
        parameters = reg_utils.update_parameters(parameters, grads, learning_rate)

        # 记录并打印成本
        if i % 1000 == 0:
            ## 记录成本
            costs.append(cost)
            if (print_cost and i % 10000 == 0):
                # 打印成本
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    # 是否绘制成本曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (x1,000)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    # 返回学习后的参数
    return parameters

# 不使用正则化 进训练 并展示准确率
# parameters = model(train_X, train_Y,is_plot=True)
# print("训练集:")
# predictions_train = reg_utils.predict(train_X, train_Y, parameters)
# print("测试集:")
# predictions_test = reg_utils.predict(test_X, test_Y, parameters)

# 数据的预测结果
# plt.title("Model without regularization")
# axes = plt.gca()
# axes.set_xlim([-0.75,0.40])
# axes.set_ylim([-0.75,0.65])
# reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)

# L2正则化的成本函数计算
def compute_cost_with_regularization(A3, Y, parameters, lambd):
    """
    实现公式2的L2正则化计算成本

    参数:
        A3 - 正向传播的输出结果,维度为(输出节点数量,训练/测试的数量)
        Y - 标签向量,与数据一一对应,维度为(输出节点数量,训练/测试的数量)
        parameters - 包含模型学习后的参数的字典
    返回:
        cost - 使用公式2计算出来的正则化损失的值

    """
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    W3 = parameters["W3"]

    cross_entropy_cost = reg_utils.compute_cost(A3, Y)

    L2_regularization_cost = lambd * (np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3))) / (2 * m)

    cost = cross_entropy_cost + L2_regularization_cost

    return cost


# 当然,因为改变了成本函数,我们也必须改变反向传播的函数, 所有的梯度都必须根据这个新的成本值来计算。
def backward_propagation_with_regularization(X, Y, cache, lambd):
    """
    实现我们添加了L2正则化的模型的后向传播。

    参数:
        X - 输入数据集,维度为(输入节点数量,数据集里面的数量)
        Y - 标签,维度为(输出节点数量,数据集里面的数量)
        cache - 来自forward_propagation()的cache输出
        lambda - regularization超参数,实数

    返回:
        gradients - 一个包含了每个参数、激活值和预激活值变量的梯度的字典
    """

    m = X.shape[1]

    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y

    dW3 = (1 / m) * np.dot(dZ3, A2.T) + ((lambd * W3) / m)
    db3 = (1 / m) * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = (1 / m) * np.dot(dZ2, A1.T) + ((lambd * W2) / m)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = (1 / m) * np.dot(dZ1, X.T) + ((lambd * W1) / m)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients

# 使用L2正则化的模型训练
parameters = model(train_X, train_Y, lambd=0.7,is_plot=True)

# 输出准确度
print("使用正则化,训练集:")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("使用正则化,测试集:")
predictions_test = reg_utils.predict(test_X, test_Y, parameters)

#查看对数据集的分类结果
plt.title("Model with L2-regularization")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)

由下图的结果可以看到,我们的准确性提高到了百分之93.
在这里插入图片描述
在这里插入图片描述
注意:代码中的lambd,即表示λ,是超参数,L2正则化是使边界更平滑,如果λ过大,则可能会过平滑。 L2正则化的影响: 正则化条件会添加到损失函数中,有关权重矩阵的渐变中,权重最终变小(“权重衰减”),权重被推到较小的值。

使用Dropout随机失活

Dropout是广泛用于深度学习的正则化技术。它会在每次迭代中随机关闭一些神经元。在每次迭代中,你以概率keep-prop关闭某层的某些神经元。关闭的神经元对迭代的正向和反向传播均无助于训练。执行的原理如下:
在这里插入图片描述在这里插入图片描述
新建一个dropout.py文件,在同一个工程文件夹下,引入相关的库、加载数据、定义神经网络模型。

import numpy as np
import matplotlib.pyplot as plt
import reg_utils
from reg_utils import sigmoid, relu, plot_decision_boundary, initialize_parameters, load_2D_dataset, predict_dec
from reg_utils import compute_cost, predict, forward_propagation, backward_propagation, update_parameters
import sklearn
import sklearn.datasets
import scipy.io
from testCases import *


plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

train_X, train_Y, test_X, test_Y = load_2D_dataset()
plt.show()

# 定义我们的模型
def model(X, Y, learning_rate=0.3, num_iterations=30000, print_cost=True, is_plot=True, lambd=0, keep_prob=1):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0(蓝色) | 1(红色)】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代10000次打印一次,但是每1000次记录一个成本值
        is_polt - 是否绘制梯度下降的曲线图
        lambd - 正则化的超参数,实数,将lambd输入设置为非零值,就是启用正则化,反之则是关闭正则化
        我们使用“lambd”而不是“lambda”,因为“lambda”是Python中的保留关键字
        keep_prob - 随机删除节点的概率,开启正则化时,设置为小于1的值。
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]

    # 初始化参数
    parameters = reg_utils.initialize_parameters(layers_dims)

    # 开始学习
    for i in range(0, num_iterations):
        # 前向传播
        ##是否随机删除节点
        if keep_prob == 1:
            ###不随机删除节点
            a3, cache = reg_utils.forward_propagation(X, parameters)
        elif keep_prob < 1:
            ###随机删除节点
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
        else:
            print("keep_prob参数错误!程序退出。")
            exit

        # 计算成本
        ## 是否使用二范数
        if lambd == 0:
            ###不使用L2正则化
            cost = reg_utils.compute_cost(a3, Y)
        else:
            ###使用L2正则化
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        # 反向传播
        ##可以同时使用L2正则化和随机删除节点,但是本次实验不同时使用。
        assert (lambd == 0 or keep_prob == 1)

        ##两个参数的使用情况
        if (lambd == 0 and keep_prob == 1):
            ### 不使用L2正则化和不使用随机删除节点
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0:
            ### 使用L2正则化,不使用随机删除节点
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            ### 使用随机删除节点,不使用L2正则化
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # 更新参数
        parameters = reg_utils.update_parameters(parameters, grads, learning_rate)

        # 记录并打印成本
        if i % 1000 == 0:
            ## 记录成本
            costs.append(cost)
            if (print_cost and i % 10000 == 0):
                # 打印成本
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    # 是否绘制成本曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (x1,000)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    # 返回学习后的参数
    return parameters
# 定义dropout随机失活前向传播
def forward_propagation_with_dropout(X, parameters, keep_prob=0.5):
    """
    实现具有随机舍弃节点的前向传播。
    LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.

    参数:
        X  - 输入数据集,维度为(2,示例数)
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
            W1  - 权重矩阵,维度为(20,2)
            b1  - 偏向量,维度为(20,1)
            W2  - 权重矩阵,维度为(3,20)
            b2  - 偏向量,维度为(3,1)
            W3  - 权重矩阵,维度为(1,3)
            b3  - 偏向量,维度为(1,1)
        keep_prob  - 随机删除的概率,实数
    返回:
        A3  - 最后的激活值,维度为(1,1),正向传播的输出
        cache - 存储了一些用于计算反向传播的数值的元组
    """
    np.random.seed(1)

    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = reg_utils.relu(Z1)

    # 下面的步骤1-4对应于上述的步骤1-4。
    D1 = np.random.rand(A1.shape[0], A1.shape[1])  # 步骤1:初始化矩阵D1 = np.random.rand(..., ...)
    D1 = D1 < keep_prob  # 步骤2:将D1的值转换为0或1(使​​用keep_prob作为阈值)
    A1 = A1 * D1  # 步骤3:舍弃A1的一些节点(将它的值变为0或False)
    A1 = A1 / keep_prob  # 步骤4:缩放未舍弃的节点(不为0)的值
    """
    #不理解的同学运行一下下面代码就知道了。
    import numpy as np
    np.random.seed(1)
    A1 = np.random.randn(1,3)

    D1 = np.random.rand(A1.shape[0],A1.shape[1])
    keep_prob=0.5
    D1 = D1 < keep_prob
    print(D1)

    A1 = 0.01
    A1 = A1 * D1
    A1 = A1 / keep_prob
    print(A1)
    """

    Z2 = np.dot(W2, A1) + b2
    A2 = reg_utils.relu(Z2)

    # 下面的步骤1-4对应于上述的步骤1-4。
    D2 = np.random.rand(A2.shape[0], A2.shape[1])  # 步骤1:初始化矩阵D2 = np.random.rand(..., ...)
    D2 = D2 < keep_prob  # 步骤2:将D2的值转换为0或1(使​​用keep_prob作为阈值)
    A2 = A2 * D2  # 步骤3:舍弃A1的一些节点(将它的值变为0或False)
    A2 = A2 / keep_prob  # 步骤4:缩放未舍弃的节点(不为0)的值

    Z3 = np.dot(W3, A2) + b3
    A3 = reg_utils.sigmoid(Z3)

    cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)

    return A3, cache

在这里插入图片描述

# 相应的改变后向传播函数
def backward_propagation_with_dropout(X, Y, cache, keep_prob):
    """
    实现我们随机删除的模型的后向传播。
    参数:
        X  - 输入数据集,维度为(2,示例数)
        Y  - 标签,维度为(输出节点数量,示例数量)
        cache - 来自forward_propagation_with_dropout()的cache输出
        keep_prob  - 随机删除的概率,实数

    返回:
        gradients - 一个关于每个参数、激活值和预激活变量的梯度值的字典
    """
    m = X.shape[1]
    (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y
    dW3 = (1 / m) * np.dot(dZ3, A2.T)
    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)
    dA2 = np.dot(W3.T, dZ3)

    dA2 = dA2 * D2  # 步骤1:使用正向传播期间相同的节点,舍弃那些关闭的节点(因为任何数乘以0或者False都为0或者False)
    dA2 = dA2 / keep_prob  # 步骤2:缩放未舍弃的节点(不为0)的值

    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1. / m * np.dot(dZ2, A1.T)
    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)

    dA1 = dA1 * D1  # 步骤1:使用正向传播期间相同的节点,舍弃那些关闭的节点(因为任何数乘以0或者False都为0或者False)
    dA1 = dA1 / keep_prob  # 步骤2:缩放未舍弃的节点(不为0)的值

    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1. / m * np.dot(dZ1, X.T)
    db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients

接下来就使用dropout正则化进行训练模型,并展示准确率以及成本函数J和最后的预测分类

# 训练模型使用dropou正则,每次有百分之14(0.14)的概率失去某些神经单元
parameters = model(train_X, train_Y, keep_prob=0.86, learning_rate=0.3,is_plot=True)

print("使用随机删除节点,训练集:")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("使用随机删除节点,测试集:")
reg_utils.predictions_test = reg_utils.predict(test_X, test_Y, parameters)

# 查看预测分类情况
plt.title("Model with dropout")
axes = plt.gca()
axes.set_xlim([-0.75, 0.40])
axes.set_ylim([-0.75, 0.65])
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)

在这里插入图片描述

在这里插入图片描述
注意:

  • dropout是一种正则化技术。
  • 仅在训练期间使用dropout,在测试期间不要使用。
  • 在正向和反向传播期间均应用dropout。

正则化完整代码

import numpy as np
import matplotlib.pyplot as plt
import reg_utils
from reg_utils import sigmoid, relu, plot_decision_boundary, initialize_parameters, load_2D_dataset, predict_dec
from reg_utils import compute_cost, predict, forward_propagation, backward_propagation, update_parameters
import sklearn
import sklearn.datasets
import scipy.io
from testCases import *


plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

train_X, train_Y, test_X, test_Y = load_2D_dataset()
plt.show()

# 定义我们的模型
def model(X, Y, learning_rate=0.3, num_iterations=30000, print_cost=True, is_plot=True, lambd=0, keep_prob=1):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0(蓝色) | 1(红色)】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代10000次打印一次,但是每1000次记录一个成本值
        is_polt - 是否绘制梯度下降的曲线图
        lambd - 正则化的超参数,实数,将lambd输入设置为非零值,就是启用正则化,反之则是关闭正则化
        我们使用“lambd”而不是“lambda”,因为“lambda”是Python中的保留关键字
        keep_prob - 随机删除节点的概率,开启正则化时,设置为小于1的值。
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]

    # 初始化参数
    parameters = reg_utils.initialize_parameters(layers_dims)

    # 开始学习
    for i in range(0, num_iterations):
        # 前向传播
        ##是否随机删除节点
        if keep_prob == 1:
            ###不随机删除节点
            a3, cache = reg_utils.forward_propagation(X, parameters)
        elif keep_prob < 1:
            ###随机删除节点
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
        else:
            print("keep_prob参数错误!程序退出。")
            exit

        # 计算成本
        ## 是否使用二范数
        if lambd == 0:
            ###不使用L2正则化
            cost = reg_utils.compute_cost(a3, Y)
        else:
            ###使用L2正则化
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        # 反向传播
        ##可以同时使用L2正则化和随机删除节点,但是本次实验不同时使用。
        assert (lambd == 0 or keep_prob == 1)

        ##两个参数的使用情况
        if (lambd == 0 and keep_prob == 1):
            ### 不使用L2正则化和不使用随机删除节点
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0:
            ### 使用L2正则化,不使用随机删除节点
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            ### 使用随机删除节点,不使用L2正则化
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # 更新参数
        parameters = reg_utils.update_parameters(parameters, grads, learning_rate)

        # 记录并打印成本
        if i % 1000 == 0:
            ## 记录成本
            costs.append(cost)
            if (print_cost and i % 10000 == 0):
                # 打印成本
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    # 是否绘制成本曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (x1,000)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    # 返回学习后的参数
    return parameters

# 不使用正则化 进训练 并展示准确率
# parameters = model(train_X, train_Y,is_plot=True)
# print("训练集:")
# predictions_train = reg_utils.predict(train_X, train_Y, parameters)
# print("测试集:")
# predictions_test = reg_utils.predict(test_X, test_Y, parameters)

# 数据的预测结果
# plt.title("Model without regularization")
# axes = plt.gca()
# axes.set_xlim([-0.75,0.40])
# axes.set_ylim([-0.75,0.65])
# reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)

# L2正则化的成本函数计算
def compute_cost_with_regularization(A3, Y, parameters, lambd):
    """
    实现公式2的L2正则化计算成本

    参数:
        A3 - 正向传播的输出结果,维度为(输出节点数量,训练/测试的数量)
        Y - 标签向量,与数据一一对应,维度为(输出节点数量,训练/测试的数量)
        parameters - 包含模型学习后的参数的字典
    返回:
        cost - 使用公式2计算出来的正则化损失的值

    """
    m = Y.shape[1]
    W1 = parameters["W1"]
    W2 = parameters["W2"]
    W3 = parameters["W3"]

    cross_entropy_cost = reg_utils.compute_cost(A3, Y)

    L2_regularization_cost = lambd * (np.sum(np.square(W1)) + np.sum(np.square(W2)) + np.sum(np.square(W3))) / (2 * m)

    cost = cross_entropy_cost + L2_regularization_cost

    return cost


# 当然,因为改变了成本函数,我们也必须改变反向传播的函数, 所有的梯度都必须根据这个新的成本值来计算。
def backward_propagation_with_regularization(X, Y, cache, lambd):
    """
    实现我们添加了L2正则化的模型的后向传播。

    参数:
        X - 输入数据集,维度为(输入节点数量,数据集里面的数量)
        Y - 标签,维度为(输出节点数量,数据集里面的数量)
        cache - 来自forward_propagation()的cache输出
        lambda - regularization超参数,实数

    返回:
        gradients - 一个包含了每个参数、激活值和预激活值变量的梯度的字典
    """

    m = X.shape[1]

    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y

    dW3 = (1 / m) * np.dot(dZ3, A2.T) + ((lambd * W3) / m)
    db3 = (1 / m) * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = (1 / m) * np.dot(dZ2, A1.T) + ((lambd * W2) / m)
    db2 = (1 / m) * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = (1 / m) * np.dot(dZ1, X.T) + ((lambd * W1) / m)
    db1 = (1 / m) * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients

# 使用L2正则化的模型训练
parameters = model(train_X, train_Y, lambd=0.7,is_plot=True)

# 输出准确度
print("使用正则化,训练集:")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("使用正则化,测试集:")
predictions_test = reg_utils.predict(test_X, test_Y, parameters)

#查看对数据集的分类结果
plt.title("Model with L2-regularization")
axes = plt.gca()
axes.set_xlim([-0.75,0.40])
axes.set_ylim([-0.75,0.65])
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)

随机失活完整代码

import numpy as np
import matplotlib.pyplot as plt
import reg_utils
from reg_utils import sigmoid, relu, plot_decision_boundary, initialize_parameters, load_2D_dataset, predict_dec
from reg_utils import compute_cost, predict, forward_propagation, backward_propagation, update_parameters
import sklearn
import sklearn.datasets
import scipy.io
from testCases import *


plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'

train_X, train_Y, test_X, test_Y = load_2D_dataset()
plt.show()

# 定义我们的模型
def model(X, Y, learning_rate=0.3, num_iterations=30000, print_cost=True, is_plot=True, lambd=0, keep_prob=1):
    """
    实现一个三层的神经网络:LINEAR ->RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID

    参数:
        X - 输入的数据,维度为(2, 要训练/测试的数量)
        Y - 标签,【0(蓝色) | 1(红色)】,维度为(1,对应的是输入的数据的标签)
        learning_rate - 学习速率
        num_iterations - 迭代的次数
        print_cost - 是否打印成本值,每迭代10000次打印一次,但是每1000次记录一个成本值
        is_polt - 是否绘制梯度下降的曲线图
        lambd - 正则化的超参数,实数,将lambd输入设置为非零值,就是启用正则化,反之则是关闭正则化
        我们使用“lambd”而不是“lambda”,因为“lambda”是Python中的保留关键字
        keep_prob - 随机删除节点的概率,开启正则化时,设置为小于1的值。
    返回
        parameters - 学习后的参数
    """
    grads = {}
    costs = []
    m = X.shape[1]
    layers_dims = [X.shape[0], 20, 3, 1]

    # 初始化参数
    parameters = reg_utils.initialize_parameters(layers_dims)

    # 开始学习
    for i in range(0, num_iterations):
        # 前向传播
        ##是否随机删除节点
        if keep_prob == 1:
            ###不随机删除节点
            a3, cache = reg_utils.forward_propagation(X, parameters)
        elif keep_prob < 1:
            ###随机删除节点
            a3, cache = forward_propagation_with_dropout(X, parameters, keep_prob)
        else:
            print("keep_prob参数错误!程序退出。")
            exit

        # 计算成本
        ## 是否使用二范数
        if lambd == 0:
            ###不使用L2正则化
            cost = reg_utils.compute_cost(a3, Y)
        else:
            ###使用L2正则化
            cost = compute_cost_with_regularization(a3, Y, parameters, lambd)

        # 反向传播
        ##可以同时使用L2正则化和随机删除节点,但是本次实验不同时使用。
        assert (lambd == 0 or keep_prob == 1)

        ##两个参数的使用情况
        if (lambd == 0 and keep_prob == 1):
            ### 不使用L2正则化和不使用随机删除节点
            grads = reg_utils.backward_propagation(X, Y, cache)
        elif lambd != 0:
            ### 使用L2正则化,不使用随机删除节点
            grads = backward_propagation_with_regularization(X, Y, cache, lambd)
        elif keep_prob < 1:
            ### 使用随机删除节点,不使用L2正则化
            grads = backward_propagation_with_dropout(X, Y, cache, keep_prob)

        # 更新参数
        parameters = reg_utils.update_parameters(parameters, grads, learning_rate)

        # 记录并打印成本
        if i % 1000 == 0:
            ## 记录成本
            costs.append(cost)
            if (print_cost and i % 10000 == 0):
                # 打印成本
                print("第" + str(i) + "次迭代,成本值为:" + str(cost))

    # 是否绘制成本曲线图
    if is_plot:
        plt.plot(costs)
        plt.ylabel('cost')
        plt.xlabel('iterations (x1,000)')
        plt.title("Learning rate =" + str(learning_rate))
        plt.show()

    # 返回学习后的参数
    return parameters

# 定义dropout随机失活前向传播
def forward_propagation_with_dropout(X, parameters, keep_prob=0.5):
    """
    实现具有随机舍弃节点的前向传播。
    LINEAR -> RELU + DROPOUT -> LINEAR -> RELU + DROPOUT -> LINEAR -> SIGMOID.

    参数:
        X  - 输入数据集,维度为(2,示例数)
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
            W1  - 权重矩阵,维度为(20,2)
            b1  - 偏向量,维度为(20,1)
            W2  - 权重矩阵,维度为(3,20)
            b2  - 偏向量,维度为(3,1)
            W3  - 权重矩阵,维度为(1,3)
            b3  - 偏向量,维度为(1,1)
        keep_prob  - 随机删除的概率,实数
    返回:
        A3  - 最后的激活值,维度为(1,1),正向传播的输出
        cache - 存储了一些用于计算反向传播的数值的元组
    """
    np.random.seed(1)

    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = reg_utils.relu(Z1)

    # 下面的步骤1-4对应于上述的步骤1-4。
    D1 = np.random.rand(A1.shape[0], A1.shape[1])  # 步骤1:初始化矩阵D1 = np.random.rand(..., ...)
    D1 = D1 < keep_prob  # 步骤2:将D1的值转换为0或1(使​​用keep_prob作为阈值)
    A1 = A1 * D1  # 步骤3:舍弃A1的一些节点(将它的值变为0或False)
    A1 = A1 / keep_prob  # 步骤4:缩放未舍弃的节点(不为0)的值
    """
    #不理解的同学运行一下下面代码就知道了。
    import numpy as np
    np.random.seed(1)
    A1 = np.random.randn(1,3)

    D1 = np.random.rand(A1.shape[0],A1.shape[1])
    keep_prob=0.5
    D1 = D1 < keep_prob
    print(D1)

    A1 = 0.01
    A1 = A1 * D1
    A1 = A1 / keep_prob
    print(A1)
    """

    Z2 = np.dot(W2, A1) + b2
    A2 = reg_utils.relu(Z2)

    # 下面的步骤1-4对应于上述的步骤1-4。
    D2 = np.random.rand(A2.shape[0], A2.shape[1])  # 步骤1:初始化矩阵D2 = np.random.rand(..., ...)
    D2 = D2 < keep_prob  # 步骤2:将D2的值转换为0或1(使​​用keep_prob作为阈值)
    A2 = A2 * D2  # 步骤3:舍弃A1的一些节点(将它的值变为0或False)
    A2 = A2 / keep_prob  # 步骤4:缩放未舍弃的节点(不为0)的值

    Z3 = np.dot(W3, A2) + b3
    A3 = reg_utils.sigmoid(Z3)

    cache = (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3)

    return A3, cache

# 相应的改变后向传播函数
def backward_propagation_with_dropout(X, Y, cache, keep_prob):
    """
    实现我们随机删除的模型的后向传播。
    参数:
        X  - 输入数据集,维度为(2,示例数)
        Y  - 标签,维度为(输出节点数量,示例数量)
        cache - 来自forward_propagation_with_dropout()的cache输出
        keep_prob  - 随机删除的概率,实数

    返回:
        gradients - 一个关于每个参数、激活值和预激活变量的梯度值的字典
    """
    m = X.shape[1]
    (Z1, D1, A1, W1, b1, Z2, D2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y
    dW3 = (1 / m) * np.dot(dZ3, A2.T)
    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)
    dA2 = np.dot(W3.T, dZ3)

    dA2 = dA2 * D2  # 步骤1:使用正向传播期间相同的节点,舍弃那些关闭的节点(因为任何数乘以0或者False都为0或者False)
    dA2 = dA2 / keep_prob  # 步骤2:缩放未舍弃的节点(不为0)的值

    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    dW2 = 1. / m * np.dot(dZ2, A1.T)
    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)

    dA1 = dA1 * D1  # 步骤1:使用正向传播期间相同的节点,舍弃那些关闭的节点(因为任何数乘以0或者False都为0或者False)
    dA1 = dA1 / keep_prob  # 步骤2:缩放未舍弃的节点(不为0)的值

    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1. / m * np.dot(dZ1, X.T)
    db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3, "dA2": dA2,
                 "dZ2": dZ2, "dW2": dW2, "db2": db2, "dA1": dA1,
                 "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients

# 训练模型使用dropou正则,每次有百分之14(0.14)的概率失去某些神经单元
parameters = model(train_X, train_Y, keep_prob=0.86, learning_rate=0.3,is_plot=True)

print("使用随机删除节点,训练集:")
predictions_train = reg_utils.predict(train_X, train_Y, parameters)
print("使用随机删除节点,测试集:")
reg_utils.predictions_test = reg_utils.predict(test_X, test_Y, parameters)

# 查看预测分类情况
plt.title("Model with dropout")
axes = plt.gca()
axes.set_xlim([-0.75, 0.40])
axes.set_ylim([-0.75, 0.65])
reg_utils.plot_decision_boundary(lambda x: reg_utils.predict_dec(parameters, x.T), train_X, train_Y)

小结

  • 正则化将帮助减少过拟合。
  • 正则化将使权重降低到较低的值。
  • L2正则化和Dropout是两种非常有效的正则化技术。
  • 正则化会损害训练集的性能! 这是因为它限制了网络过拟合训练集的能力。 但是,由于它最终可以提供更好的测试准确性,因此可以为训练模型提供帮助。

梯度检验

在我们执行反向传播的计算过程中,反向传播函数的计算过程是比较复杂的。为了验证我们得到的反向传播函数是否正确,现在需要编写一些代码来验证反向传播函数的正确性。首先看一下导数的定义,θ表示模型中的参数, ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ是我们想要检验的值。
在这里插入图片描述
先进行一个一维线性模型的检验,我们的函数是 J ( θ ) = θ x J(\theta) = \theta x J(θ)=θx,θ是实数值参数,x是输入,导数是 ∂ J ∂ θ \frac{\partial J}{\partial \theta} θJ
该函数的前向传播定义如下

def forward_propagation(x,theta):
    """
    
    实现图中呈现的线性前向传播(计算J)(J(theta)= theta * x)
    
    参数:
    x  - 一个实值输入
    theta  - 参数,也是一个实数
    
    返回:
    J  - 函数J的值,用公式J(theta)= theta * x计算
    """
    J = np.dot(theta,x)
    
    return J

该函数的反向传播定义

def backward_propagation(x,theta):
    """
    计算J相对于θ的导数。
    
    参数:
        x  - 一个实值输入
        theta  - 参数,也是一个实数
    
    返回:
        dtheta  - 相对于θ的成本梯度
    """
    dtheta = x
    
    return dtheta

接下来是梯度检查的步骤,其中的公式(4)中的2是平方的意思。
在这里插入图片描述
定义梯度检测公式,difference小于 10的负7次方时时,我们通常认为我们计算的结果是正确的。

def gradient_check(x,theta,epsilon=1e-7):
    """
    
    实现图中的反向传播。
    
    参数:
        x  - 一个实值输入
        theta  - 参数,也是一个实数
        epsilon  - 使用公式(3)计算输入的微小偏移以计算近似梯度
    
    返回:
        近似梯度和后向传播梯度之间的差异
    """
    
    #使用公式(3)的左侧计算gradapprox。
    thetaplus = theta + epsilon                               # Step 1
    thetaminus = theta - epsilon                              # Step 2
    J_plus = forward_propagation(x, thetaplus)                # Step 3
    J_minus = forward_propagation(x, thetaminus)              # Step 4
    gradapprox = (J_plus - J_minus) / (2 * epsilon)           # Step 5
    
    
    #检查gradapprox是否足够接近backward_propagation()的输出
    grad = backward_propagation(x, theta)
    
    numerator = np.linalg.norm(grad - gradapprox)                      # Step 1'
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)    # Step 2'
    difference = numerator / denominator                               # Step 3'
    
    if difference < 1e-7:
        print("梯度检查:梯度正常!")
    else:
        print("梯度检查:梯度超出阈值!")
    
    return difference

高维情况下的前向传播
在这里插入图片描述

def forward_propagation_n(X,Y,parameters):
    """
    实现图中的前向传播(并计算成本)。
    
    参数:
        X - 训练集为m个例子
        Y -  m个示例的标签
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
            W1  - 权重矩阵,维度为(5,4)
            b1  - 偏向量,维度为(5,1)
            W2  - 权重矩阵,维度为(3,5)
            b2  - 偏向量,维度为(3,1)
            W3  - 权重矩阵,维度为(1,3)
            b3  - 偏向量,维度为(1,1)
   
    返回:
        cost - 成本函数(logistic)
    """
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]
    
    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1,X) + b1
    A1 = gc_utils.relu(Z1)
    
    Z2 = np.dot(W2,A1) + b2
    A2 = gc_utils.relu(Z2)
    
    Z3 = np.dot(W3,A2) + b3
    A3 = gc_utils.sigmoid(Z3)
    
    #计算成本
    logprobs = np.multiply(-np.log(A3), Y) + np.multiply(-np.log(1 - A3), 1 - Y)
    cost = (1 / m) * np.sum(logprobs)
    
    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache

反向传播

def backward_propagation_n(X,Y,cache):
    """
    实现图中所示的反向传播。
    
    参数:
        X - 输入数据点(输入节点数量,1)
        Y - 标签
        cache - 来自forward_propagation_n()的cache输出
    
    返回:
        gradients - 一个字典,其中包含与每个参数、激活和激活前变量相关的成本梯度。
    """
    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache
    
    dZ3 = A3 - Y
    dW3 = (1. / m) * np.dot(dZ3,A2.T)
    dW3 = 1. / m * np.dot(dZ3, A2.T)
    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)
    
    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    #dW2 = 1. / m * np.dot(dZ2, A1.T) * 2  # Should not multiply by 2
    dW2 = 1. / m * np.dot(dZ2, A1.T)
    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)
    
    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1. / m * np.dot(dZ1, X.T)
    #db1 = 4. / m * np.sum(dZ1, axis=1, keepdims=True) # Should not multiply by 4
    db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)
    
    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
                 "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
                 "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}
 
    return gradients

高维情况下的梯度检验公式与一维线性公式相同,但是,θ不再是标量。 而是一个叫做“参数”的字典。 在需要的资料库中我们为你实现了一个函数"dictionary_to_vector()"。它将“参数”字典转换为称为“值”的向量,该向量是通过将所有参数(W1, b1, W2, b2, W3, b3)重塑为向量并将它们串联而获得的。反函数是“vector_to_dictionary”,它输出回“parameters”字典。
定义n维的梯度检验函数

def gradient_check_n(parameters,gradients,X,Y,epsilon=1e-7):
    """
    检查backward_propagation_n是否正确计算forward_propagation_n输出的成本梯度
    
    参数:
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
        grad_output_propagation_n的输出包含与参数相关的成本梯度。
        x  - 输入数据点,维度为(输入节点数量,1)
        y  - 标签
        epsilon  - 计算输入的微小偏移以计算近似梯度
    
    返回:
        difference - 近似梯度和后向传播梯度之间的差异
    """
    #初始化参数
    parameters_values , keys = gc_utils.dictionary_to_vector(parameters) #keys用不到
    grad = gc_utils.gradients_to_vector(gradients)
    num_parameters = parameters_values.shape[0]
    J_plus = np.zeros((num_parameters,1))
    J_minus = np.zeros((num_parameters,1))
    gradapprox = np.zeros((num_parameters,1))
    
    #计算gradapprox
    for i in range(num_parameters):
        #计算J_plus [i]。输入:“parameters_values,epsilon”。输出=“J_plus [i]”
        thetaplus = np.copy(parameters_values)                                                  # Step 1
        thetaplus[i][0] = thetaplus[i][0] + epsilon                                             # Step 2
        J_plus[i], cache = forward_propagation_n(X,Y,gc_utils.vector_to_dictionary(thetaplus))  # Step 3 ,cache用不到
        
        #计算J_minus [i]。输入:“parameters_values,epsilon”。输出=“J_minus [i]”。
        thetaminus = np.copy(parameters_values)                                                 # Step 1
        thetaminus[i][0] = thetaminus[i][0] - epsilon                                           # Step 2        
        J_minus[i], cache = forward_propagation_n(X,Y,gc_utils.vector_to_dictionary(thetaminus))# Step 3 ,cache用不到
        
        #计算gradapprox[i]
        gradapprox[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon)
        
    #通过计算差异比较gradapprox和后向传播梯度。
    numerator = np.linalg.norm(grad - gradapprox)                                     # Step 1'
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)                   # Step 2'
    difference = numerator / denominator                                              # Step 3'
    
    if difference < 1e-7:
        print("梯度检查:梯度正常!")
    else:
        print(difference,"梯度检查:梯度超出阈值!")
    
    return difference

验证多维情况下的梯度检验结果

#资料文件中的testCases中的函数
X, Y, parameters = gradient_check_n_test_case()

cost, cache = forward_propagation_n(X, Y, parameters)
gradients = backward_propagation_n(X, Y, cache)
difference = gradient_check_n(parameters, gradients, X, Y)

最后多维梯度检验的运行结果

在这里插入图片描述

梯度检验完整代码

import numpy as np
import matplotlib.pyplot as plt
import reg_utils
import gc_utils
from reg_utils import sigmoid, relu, plot_decision_boundary, initialize_parameters, load_2D_dataset, predict_dec
from reg_utils import compute_cost, predict, forward_propagation, backward_propagation, update_parameters
import sklearn
import sklearn.datasets
import scipy.io
from testCases import *

# 一维线性模型的前向传播
def forward_propagation(x, theta):
    """

    实现图中呈现的线性前向传播(计算J)(J(theta)= theta * x)

    参数:
    x  - 一个实值输入
    theta  - 参数,也是一个实数

    返回:
    J  - 函数J的值,用公式J(theta)= theta * x计算
    """
    J = np.dot(theta, x)

    return J

#反向传播
def backward_propagation(x, theta):
    """
    计算J相对于θ的导数。

    参数:
        x  - 一个实值输入
        theta  - 参数,也是一个实数

    返回:
        dtheta  - 相对于θ的成本梯度
    """
    dtheta = x

    return dtheta
# 一维线性的梯度检验函数
def gradient_check(x, theta, epsilon=1e-7):
    """

    实现图中的反向传播。

    参数:
        x  - 一个实值输入
        theta  - 参数,也是一个实数
        epsilon  - 使用公式(3)计算输入的微小偏移以计算近似梯度

    返回:
        近似梯度和后向传播梯度之间的差异
    """

    # 使用公式(3)的左侧计算gradapprox。
    thetaplus = theta + epsilon  # Step 1
    thetaminus = theta - epsilon  # Step 2
    J_plus = forward_propagation(x, thetaplus)  # Step 3
    J_minus = forward_propagation(x, thetaminus)  # Step 4
    gradapprox = (J_plus - J_minus) / (2 * epsilon)  # Step 5

    # 检查gradapprox是否足够接近backward_propagation()的输出
    grad = backward_propagation(x, theta)

    numerator = np.linalg.norm(grad - gradapprox)  # Step 1'
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)  # Step 2'
    difference = numerator / denominator  # Step 3'

    if difference < 1e-7:
        print("梯度检查:梯度正常!")
    else:
        print("梯度检查:梯度超出阈值!")

    return difference

# 测试运行结果
# print("-----------------测试gradient_check-----------------")
# x, theta = 2, 4
# difference = gradient_check(x, theta)
# print("difference = " + str(difference))

# 定义多维的前向传播
def forward_propagation_n(X, Y, parameters):
    """
    实现图中的前向传播(并计算成本)。

    参数:
        X - 训练集为m个例子
        Y -  m个示例的标签
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
            W1  - 权重矩阵,维度为(5,4)
            b1  - 偏向量,维度为(5,1)
            W2  - 权重矩阵,维度为(3,5)
            b2  - 偏向量,维度为(3,1)
            W3  - 权重矩阵,维度为(1,3)
            b3  - 偏向量,维度为(1,1)

    返回:
        cost - 成本函数(logistic)
    """
    m = X.shape[1]
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    W3 = parameters["W3"]
    b3 = parameters["b3"]

    # LINEAR -> RELU -> LINEAR -> RELU -> LINEAR -> SIGMOID
    Z1 = np.dot(W1, X) + b1
    A1 = gc_utils.relu(Z1)

    Z2 = np.dot(W2, A1) + b2
    A2 = gc_utils.relu(Z2)

    Z3 = np.dot(W3, A2) + b3
    A3 = gc_utils.sigmoid(Z3)

    # 计算成本
    logprobs = np.multiply(-np.log(A3), Y) + np.multiply(-np.log(1 - A3), 1 - Y)
    cost = (1 / m) * np.sum(logprobs)

    cache = (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3)

    return cost, cache

# 多维的反向传播
def backward_propagation_n(X, Y, cache):
    """
    实现图中所示的反向传播。

    参数:
        X - 输入数据点(输入节点数量,1)
        Y - 标签
        cache - 来自forward_propagation_n()的cache输出

    返回:
        gradients - 一个字典,其中包含与每个参数、激活和激活前变量相关的成本梯度。
    """
    m = X.shape[1]
    (Z1, A1, W1, b1, Z2, A2, W2, b2, Z3, A3, W3, b3) = cache

    dZ3 = A3 - Y
    dW3 = (1. / m) * np.dot(dZ3, A2.T)
    dW3 = 1. / m * np.dot(dZ3, A2.T)
    db3 = 1. / m * np.sum(dZ3, axis=1, keepdims=True)

    dA2 = np.dot(W3.T, dZ3)
    dZ2 = np.multiply(dA2, np.int64(A2 > 0))
    # dW2 = 1. / m * np.dot(dZ2, A1.T) * 2  # Should not multiply by 2
    dW2 = 1. / m * np.dot(dZ2, A1.T)
    db2 = 1. / m * np.sum(dZ2, axis=1, keepdims=True)

    dA1 = np.dot(W2.T, dZ2)
    dZ1 = np.multiply(dA1, np.int64(A1 > 0))
    dW1 = 1. / m * np.dot(dZ1, X.T)
    # db1 = 4. / m * np.sum(dZ1, axis=1, keepdims=True) # Should not multiply by 4
    db1 = 1. / m * np.sum(dZ1, axis=1, keepdims=True)

    gradients = {"dZ3": dZ3, "dW3": dW3, "db3": db3,
                 "dA2": dA2, "dZ2": dZ2, "dW2": dW2, "db2": db2,
                 "dA1": dA1, "dZ1": dZ1, "dW1": dW1, "db1": db1}

    return gradients

# 多维的梯度检验函数
def gradient_check_n(parameters, gradients, X, Y, epsilon=1e-7):
    """
    检查backward_propagation_n是否正确计算forward_propagation_n输出的成本梯度

    参数:
        parameters - 包含参数“W1”,“b1”,“W2”,“b2”,“W3”,“b3”的python字典:
        grad_output_propagation_n的输出包含与参数相关的成本梯度。
        x  - 输入数据点,维度为(输入节点数量,1)
        y  - 标签
        epsilon  - 计算输入的微小偏移以计算近似梯度

    返回:
        difference - 近似梯度和后向传播梯度之间的差异
    """
    # 初始化参数
    parameters_values, keys = gc_utils.dictionary_to_vector(parameters)  # keys用不到
    grad = gc_utils.gradients_to_vector(gradients)
    num_parameters = parameters_values.shape[0]
    J_plus = np.zeros((num_parameters, 1))
    J_minus = np.zeros((num_parameters, 1))
    gradapprox = np.zeros((num_parameters, 1))

    # 计算gradapprox
    for i in range(num_parameters):
        # 计算J_plus [i]。输入:“parameters_values,epsilon”。输出=“J_plus [i]”
        thetaplus = np.copy(parameters_values)  # Step 1
        thetaplus[i][0] = thetaplus[i][0] + epsilon  # Step 2
        J_plus[i], cache = forward_propagation_n(X, Y, gc_utils.vector_to_dictionary(thetaplus))  # Step 3 ,cache用不到

        # 计算J_minus [i]。输入:“parameters_values,epsilon”。输出=“J_minus [i]”。
        thetaminus = np.copy(parameters_values)  # Step 1
        thetaminus[i][0] = thetaminus[i][0] - epsilon  # Step 2
        J_minus[i], cache = forward_propagation_n(X, Y, gc_utils.vector_to_dictionary(thetaminus))  # Step 3 ,cache用不到

        # 计算gradapprox[i]
        gradapprox[i] = (J_plus[i] - J_minus[i]) / (2 * epsilon)

    # 通过计算差异比较gradapprox和后向传播梯度。
    numerator = np.linalg.norm(grad - gradapprox)  # Step 1'
    denominator = np.linalg.norm(grad) + np.linalg.norm(gradapprox)  # Step 2'
    difference = numerator / denominator  # Step 3'

    if difference < 1e-7:
        print("梯度检查:梯度正常!")
    else:
        print(difference,"梯度检查:梯度超出阈值!")

    return difference

# 运行梯度检验结果

#资料文件中的testCases中的函数
X, Y, parameters = gradient_check_n_test_case()

cost, cache = forward_propagation_n(X, Y, parameters)
gradients = backward_propagation_n(X, Y, cache)
difference = gradient_check_n(parameters, gradients, X, Y)

小结

梯度检验很慢!逼近梯度在计算上是很耗费资源的。因此,我们不会在训练期间的每次迭代中都进行梯度检验。只需检查几次梯度是否正确。梯度检验不适用于dropout,通常,你将运行不带dropout的梯度检验算法以确保你的反向传播是正确的,然后添加dropout。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值