半天速成!时序预测-回归-分类-故障识别-优化30个Matlab程序大合集!CNN、LSTM、BP、SVM、RBF等,程序不用改,Excel导入,直接运行

​半天速成,助你从入门到精通!中文注释非常清晰,非常适合新手小白上手。程序均已调试好,直接可以运行,数据集由excel导入,方便更换。适用平台:Matlab2020及以上

回归预测、分类预测和时间序列预测都是机器学习和深度学习领域中的预测任务,下面介绍回归预测、分类预测和时间序列预测它们各自的功能及数据输入格式,以便大家上手直接运行。

回归预测:

  • 功能:回归问题的目标是找到输入变量特征和输出之间的关系,以便能够对未知输入进行预测,如风速预测、光伏功率预测、发电功率、碳价预测等。

  • 数据格式:一行一个样本,由特征1至特征7输入,预测输出值。

时间序列预测:

  • 功能:时间序列预测是用于预测随时间变化的数据的未来趋势,通常用于处理时间相关的数据,如股票预测、房价预测、天气变化等。

  • 数据格式:由时刻1—4的值预测时刻5的值,由时刻2—5的值预测时刻6的值,由时刻3—6的值预测时刻7的值,以此类推。

分类预测:

  • 功能:分类预测用于将输入数据分为不同的类别或标签。输出是离散的,通常表示一个类别或标签。如:滚动轴承故障、变压器油气故障、电力系统输电线路故障区域、绝缘子、配网、电能质量扰动,等领域的识别、诊断和分类。

  • 数据格式:一行为一个故障样本也可以看成一个故障波形,最后一列表示该样本所属的故障类别。

程序大合集同时包含了深度学习、机器学习、优化嵌套30个程序:

深度学习:

  • CNN卷积神经网络回归、时间序列、分类预测;

  • LSTM长短期记忆网络回归、时间序列、分类预测;

  • BiLSTM双向LSTM的回归、时间序列、分类预测;

机器学习:

  • SVM支持向量机回归、时间序列、分类预测;

  • ELM极限学习机回归、时间序列、分类预测;

  • RBF径向基网络回归、时间序列、分类预测;

  • BP神经网络回归、时间序列、分类预测;

  • RF随机森林回归、时间序列、分类预测;

优化:

  • GA-BP遗传优化BP回归、时间序列、分类预测;

  • PSO-BP粒子群优化BP回归、时间序列、分类预测;

程序结果:

分类模型预测结果:混淆矩阵/散点图/展示:精确度、召回率、精确率、F1分数等评价指标。

回归模型预测结果:预测值与实际值对比曲线及误差散点图,展示:MAPE、MAE、MBE、RMSE、R²等指标

时间序列预测模型预测结果:预测值与实际值对比曲线及误差散点图,展示:MAPE、MAE、MBE、RMSE、R²等指标

代码示例:(RBF故障识别部分代码)

%%%%%%%%%%%%%%%%公众号:创新优化及预测代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res = xlsread('数据集.xlsx');

%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                    % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数

    P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)];       % 训练集输入
    T_train = [T_train; mid_res(1: mid_tiran, end)];              % 训练集输出

    P_test  = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)];  % 测试集输入
    T_test  = [T_test; mid_res(mid_tiran + 1: end, end)];         % 测试集输出
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test  = mapminmax('apply', P_test, ps_input);
t_train = ind2vec(T_train);
t_test  = ind2vec(T_test );

%%  创建网络
rbf_spread = 100;                           % 径向基函数的扩展速度
net = newrbe(p_train, t_train, rbf_spread);

%%  仿真测试
t_sim1 = sim(net, p_train);
t_sim2 = sim(net, p_test );

%%  数据反归一化
T_sim1 = vec2ind(t_sim1);
T_sim2 = vec2ind(t_sim2);

%%  性能评价
error1 = sum((T_sim1 == T_train)) / M * 100;
error2 = sum((T_sim2 == T_test )) / N * 100;

%%  网络结构
view(net)

%%  数据排序
[T_train, index_1] = sort(T_train);
[T_test , index_2] = sort(T_test );

T_sim1 = T_sim1(index_1);
T_sim2 = T_sim2(index_2);

%%  绘图
figure
plot(1: M, T_train, 'r-*', 1: M, T_sim1, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'训练集预测结果对比'; ['准确率=' num2str(error1) '%']};
title(string)
xlim([1, M])
grid

figure
plot(1: N, T_test, 'r-*', 1: N, T_sim2, 'b-o', 'LineWidth', 1)
legend('真实值', '预测值')
xlabel('预测样本')
ylabel('预测结果')
string = {'测试集预测结果对比'; ['准确率=' num2str(error2) '%']};
title(string)
xlim([1, N])
grid

%%  混淆矩阵
figure
cm = confusionchart(T_train, T_sim1);
cm.Title = '训练集预测结果的混淆矩阵';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
    
figure
cm = confusionchart(T_test, T_sim2);
cm.Title = '测试集预测结果的混淆矩阵';
cm.ColumnSummary = 'column-normalized';
cm.RowSummary = 'row-normalized';
%%%%%%%%%%%%%%%%公众号:创新优化及预测代码
%% 精度指标计算
% 数据转换为数值数组
T_test_num = T_test;
bestPred_num = T_sim2;

% 计算混淆矩阵
confMat = confusionmat(T_test_num, bestPred_num);

% 计算总样本数 N
N = numel(T_test_num);

% 计算精确度
accuracy = sum(diag(confMat)) / N;

% 计算召回率和精确率
recall = zeros(1, num_class);
precision = zeros(1, num_class);
for i = 1:num_class
    actual_positive = sum(T_test_num == i);
    true_positive = confMat(i, i);
    recall(i) = true_positive / actual_positive;
    precision(i) = true_positive / sum(bestPred_num == i);
end
% 计算F1分数
F1_score = 2 * (precision .* recall) ./ (precision + recall);

disp(['测试总样本数:', num2str((N)), '个']);
disp(['精确度:', num2str((accuracy.*100)), '  (%)']);
disp(['召回率:', num2str((recall.*100)), '  (%)']);
disp(['精确率:', num2str((precision.*100)), '  (%)']);
disp(['F1分数:', num2str((F1_score.*100)), '  (%)']);
%%%%%%%%%%%%%%%%公众号:创新优化及预测代码

部分图片来源于网络,侵权联系删除!

欢迎感兴趣的小伙伴关注,小编会继续推送更有质量的学习资料、文章和程序代码!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值