隐马尔可夫模型------基本概念

隐马尔可夫模型的定义

马尔课可夫假设:随机过程中各个状态 S_{t} 的概率分布,只与它的前一个状态 S_{t-1} 有关,即

P(S_{t}\mid S_{1},S_{2},...,S_{t-1}) = P(S_{t}\mid S_{t-1})。符合这个假设的随机过程称为马尔可夫过程,也称为马尔可夫链。

离散的马尔可夫过程:

隐马尔可夫模型是上述马尔可夫链的一个扩展:任一时刻 t 的状态 S_{t} 是不可见的。所以观察者没法通过观察得到一个状态序列 S_{1},S_{2},...,S_{T} 来推测转移概率等参数。但是,隐马尔可夫模型在每个时刻 t 会输出一个符号 O_{t} ,而且 O_{t} 跟  S_{t} 相关且仅跟 S_{t}  相关。 

隐马尔可夫模型:

隐马尔可夫模型是关于时序的概率模型,描述由一个隐藏的马尔可夫链随机生成不可观测的状态随机序列,再由各个状态生成一个观测序列从而产生观测随机序列的过程。隐藏的马尔可夫链随机生成的状态序列,称为状态序列(state sequence);每个状态生成一个观测,而由此产生的观测的随机序列,称为观测序列(observation sequence)。序列的每一个位置又可以看作是一个时刻。

隐马尔可夫模型由初始概率分布、状态转移概率分布以及观测概率分布确定。隐马尔可夫模型的形式定义如下:

设Q是所有可能的状态集合,V是所有可能的观测的集合:

Q=\left \{ s_{1},s_{2},...,s_{N} \right \},V=\left \{ v_{1},v_{2},...,v_{M} \right \}

其中,N是可能的状态数,M是可能的观测数。

I是长度为T的状态序列,O是对应的观测序列:

I=(i_{1},i_{2},...,i_{T}),O=(o_{1},o_{2},...,o_{T})

A是状态转移概率矩阵:

             A=\left [ a_{ij} \right ]_{N\times N}                                                                                           (2.1)

其中,

a_{ij}=P(i_{t+1}=s_{j}\mid i_{t}=s_{i}), i=1,2,...,N; j=1,2,...,N;                                             (2.2)

是在时刻t处于状态 s_{i} 的条件下在时刻 t+1 转移到状态 q_{j} 的概率。 

B是观测概率矩阵:

B=\left [ b_{j}(k) \right ]_{N\times M}                                                                                     (2.3)

其中,

b_{j}(k)=P(o_{t}=v_{k}\mid i_{t}=s_{j}),k=1,2,...,M; j=1,2,...,N                                        (2.4)

是在时刻 t 处于状态 s_{j} 的条件下生成观测 v_{k} 的概率。

\pi 是初始状态概率向量:

\pi=(\pi_{i})                                                                                                (2.5)

其中,

\pi=P(i_{1}=s_{i}),i=1,2,...,N                                                                              (2.6)

是时刻 t=1处于状态 s_{i} 的概率。

隐马尔可夫模型由初始状态概率向量 \pi 、状态转移概率矩阵A和观测概率矩阵B决定。\pi和A决定状态序列,B决定观测序列。因此,隐马尔可夫模型 \lambda 可以用三元符号表示,即

 \lambda =(A,B,\pi )                                                                                          (2.7)

A,B,\pi 称为马尔可夫模型的三要素。

状态转移概率矩阵A与初始状态概率向量 \pi 确定了隐藏的马尔可夫链,生成不可观测的状态序列。观测概率矩阵B确定了如何从状态生成观测,与状态序列综合确定了如何产生观测序列。

从定义可知,隐马尔可夫模型作了两个基本假设:

(1)齐次马尔可夫性假设,即假设隐藏的马尔可夫连在任意时刻 t 的状态只依赖于其前一时刻的状态,与其他时刻的状态及观测无关,也与时刻 t 无关:

P(i_{t}\mid i_{t-1},o_{t-1},...,i_{1},o_{1})=P(i_{t}\mid i_{t-1}), t=1,2,...,T                                                (2.8)

(2)观测独立性假设,即假设任意时刻的观测只依赖于该时刻的马尔科夫链的状态,与其他观测及状态无关:

P(o_{t}\mid i_{T},o_{T},i_{T-1},o_{T-1},...,i_{t+1},o_{t+1},i_{t},i_{t-1},o_{t-1},...,i_{1},o_{1})=P(o_{t}\mid i_{t})                                          (2.9)

观测序列的生成过程

根据隐马尔可夫模型定义,可以将一个长度为T的观测序列O=(o_{1},o_{2},...,o_{T})的生成过程描述如下。

输入:隐马尔可夫模型 \lambda =(A,B,\pi ),观测序列长度T;

输出:观测序列O=(o_{1},o_{2},...,o_{T})

(1) 按照初始状态分布 \pi 产生状态 i_{1};

(2) 令 t=1;

(3) 按照状态 i_{t} 的观测概率分布 b_{i_{t}}(k)生成O_{t};

(4) 按照状态 i_{t} 的状态转移概率分布\left \{ a_{i_{t} i_{t+1}} \right \}产生状态i_{t+1},i_{t+1}=1,2,...,N;

(5) 令t = t + 1;如果t<T,转(3);否则,终止。

 隐马尔可夫模型的3个基本问题

(1) 概率计算问题。给定模型 \lambda =(A,B,\pi ) 和观测序列O=(o_{1},o_{2},...,o_{T}),计算在模型 \lambda 下观测序列O出现的概率 P(O\mid \lambda )

(2) 学习问题。已知观测序列O=(o_{1},o_{2},...,o_{T}),估计模型 \lambda =(A,B,\pi )参数,使得在该模型下观测序列概率 P(O\mid \lambda )最大。即用极大似然估计的方法估计参数。

(3) 预测问题,也称为解码(decoding)问题。已知模型 \lambda =(A,B,\pi )和观测序列O=(o_{1},o_{2},...,o_{T}),求对给定观测序列条件概率 P(O\mid \lambda ) 最大的状态序列I=(i_{1},i_{2},...,i_{T})。即给定观测序列,求最有可能的对应的状态序列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值