概率论复习笔记三——随机向量,随机变量的独立性

一、随机向量及其分布

1.1 联合分布

n n n元函数 F ( x 1 , x 2 , ⋯   , x n ) = P { ξ 1 ( ω ) < x 1 , ξ 2 ( ω ) < x 2 , ⋯   , ξ n ( ω ) < x n } (1) F(x_1, x_2, \cdots, x_n)=P\{\xi_1(\omega)\lt x_1, \xi_2(\omega)\lt x_2, \cdots, \xi_n(\omega)\lt x_n\}\tag1 F(x1,x2,,xn)=P{ξ1(ω)<x1,ξ2(ω)<x2,,ξn(ω)<xn}(1)为随机向量 ξ ( ω ) = ( ξ 1 ( ω ) , ξ 2 ( ω ) , ⋯   , ξ n ( ω ) ) \bm\xi(\omega)=(\xi_1(\omega), \xi_2(\omega), \cdots, \xi_n(\omega)) ξ(ω)=(ξ1(ω),ξ2(ω),,ξn(ω))的(联合分布函数

1.2 边际分布

( ξ , η ) (\xi, \eta) (ξ,η)是二维随机向量,其分布函数为 F ( x , y ) F(x,y) F(x,y),我们能由 F ( x , y ) F(x,y) F(x,y)得出 ξ \xi ξ η \eta η的分布函数。事实上, F 1 ( x ) = P { ξ < x } = P { ξ < x , η < + ∞ } = F ( x , + ∞ ) F_1(x)=P\{\xi\lt x\}=P\{\xi\lt x, \eta\lt+\infty\}=F(x,+\infty) F1(x)=P{ξ<x}=P{ξ<x,η<+}=F(x,+),同理 F 2 ( y ) = P { η < y } = F ( + ∞ , y ) F_2(y)=P\{\eta\lt y\}=F(+\infty, y) F2(y)=P{η<y}=F(+,y)。称 F 1 ( x ) F_1(x) F1(x) F 2 ( y ) F_2(y) F2(y) F ( x , y ) F(x,y) F(x,y)边际分布函数

对于边际分布函数 F 1 ( x ) F_1(x) F1(x),其密度函数为 p 1 ( x ) = ∫ − ∞ ∞ p ( x , y )   d y (2) p_1(x)=\int_{-\infty}^{\infty}p(x,y)\, dy\tag2 p1(x)=p(x,y)dy(2)
对于边际分布函数 F 2 ( y ) F_2(y) F2(y),其密度函数为 p 2 ( y ) = ∫ − ∞ ∞ p ( x , y )   d x (3) p_2(y)=\int_{-\infty}^{\infty}p(x,y)\, dx\tag3 p2(y)=p(x,y)dx(3)

1.3 条件分布

对于随机向量 ( ξ , η ) (\xi, \eta) (ξ,η),在给定 ξ = x \xi=x ξ=x的条件下, η \eta η的分布密度函数为 p ( y ∣ x ) = p ( x , y ) p 1 ( x ) (4) p(y|x)=\frac{p(x,y)}{p_1(x)}\tag4 p(yx)=p1(x)p(x,y)(4)
同理在给定 η = y \eta=y η=y的条件下, ξ \xi ξ的分布密度函数为 p ( x ∣ y ) = p ( x , y ) p 2 ( y ) (5) p(x|y)=\frac{p(x,y)}{p_2(y)}\tag5 p(xy)=p2(y)p(x,y)(5)

1.4 独立性

ξ \xi ξ η \eta η是独立的,当且仅当 p ( x , y ) = p 1 ( x ) p 2 ( y ) (6) p(x,y)=p_1(x)p_2(y)\tag6 p(x,y)=p1(x)p2(y)(6)
等价于 p ( y ∣ x ) = p 2 ( y ) p ( x ∣ y ) = p 1 ( x ) (7) p(y|x)=p_2(y)\\ p(x|y)=p_1(x)\tag7 p(yx)=p2(y)p(xy)=p1(x)(7)

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在Python中,可以使用概率论中的随机变量分布来进行统计计算。常见的离散型分布包括二项分布和泊松分布,连续性分布包括正态分布、均匀分布和指数分布等。这些分布可以用来计算概率、期望和方差等统计量。 对于正态分布,可以使用scipy.stats库中的norm模块进行计算。例如,可以使用norm.cdf函数计算小于某个值的概率,使用norm.ppf函数计算给定累积概率时的反函数值。代码示例如下: ``` from scipy.stats import norm # 计算小于40的概率 p1 = norm.cdf(40, loc=50, scale=10) # 计算30到40之间的概率 p2 = norm.cdf(40, loc=50, scale=10) - norm.cdf(30, loc=50, scale=10) # 计算小于2.5的概率 p3 = norm.cdf(2.5, 0, 1) # 计算-1.5到2之间的概率 p4 = norm.cdf(2) - norm.cdf(-1.5) # 计算累计概率为0.025时的反函数值 q1 = norm.ppf(0.025, loc=0, scale=1) # 计算累计概率为0.975时的反函数值 q2 = norm.ppf(0.975, 0, 1) print(p1, p2, p3, p4, q1, q2) ``` 对于计算随机变量的概率分布的均值和方差,可以使用numpy库进行计算。代码示例如下: ``` import numpy as np # 假设有一个数据框df,其中包含了不合格品数和概率 mymean = sum(df['不合格品数'] * df['概率']) # 计算均值 myvar = sum((df['不合格品数'] - mymean) ** 2 * df['概率']) # 计算方差 mystd = np.sqrt(myvar) # 计算标准差 print(mymean, myvar, mystd) ``` 以上是关于Python统计学中随机变量的概率分布的一些基本操作和计算方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Python统计学03——随机变量的概率分布](https://blog.csdn.net/weixin_46277779/article/details/126673517)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值