Tensorflow1.0环境搭建(2023最新)

TensorFlow1.0环境搭建(2023最新)

1.前言

最近在学吴恩达的深度学习,在看他的代码,前面还好改为2.0就行,改的不算多,看到卷积这一块的时候嗖嗖报错,于是我就想搭建一个TensorFlow1.0的版本去跑这老旧的代码。但是在搭建1.0版本的环境,踩了诸多的坑,所以写了这样的教程,以及我提供了1.0的环境,帮助和我一样需要用tensorflow1.0版本的同胞。

如果你是刚开始学习深度学习,那么我建议去看这个课程,很新,也很详细,《动手学深度学习》,但是要是和我一样指定了让学习吴恩达的,那么就看我下面的内容吧。

2.避坑!!!(也是搭建环境的一些注意点)

  • 一定要注意python,tensorflow,numpy,scipy,matplotlib之间的版本兼容关系,不然就会出现类似DDL的错误,尽管你conda list看到没问题,但是导入在用的时候就会报DDL错误。
  • 在安装tensorflow1.0版本的时候,不要安装1.15的版本,有坑,安装1.14的就可以了,1.15安装好后会发现,有三个都是1.15,唯独有一个是2.0版本的,然后版本不一致,就导致tensorflow不可以正常使用。
  • 在某个包安装好之后,如果想要更换版本,千万不要conda remove pak_name,(不要轻信,现在好多人说的,先uninstall,在install。试过后就能重新开始换一个环境弄了)这样不仅会删掉这个想要删除的pak_name,还会删掉依赖这个pak_name的所有包,很刺激!!!正确的方法是直接conda install pak_name==版本号通过这样的方式,来下载我们所需要的包。
  • 不要conda与pip混着用,在虚拟环境里面就用conda去下载所需要的包,在初始环境里面用pip去下载。

本人血与泪的教训,分享给大家,希望大家不要踩坑!!!

3.环境搭建(常用的包都覆盖了)

没有镜像源的可以看我的博客,有一篇配置镜像源的教程。

3.1新建虚拟环境

conda create --name you_env_name python=3.6.2

3.2切换虚拟环境

conda activate you_env_name

3.3安装tensorflow1.14.0

conda install tensorflow-gpu==1.14.0

安装好tensorflow之后就会默认安装好依赖的numpy与scipy,不要再去安装其他版本的numpy与scipy了,否则运行代码的时候会报错。

tensorflow 1.14.0安装好后,默认安装的依赖numpy 为 1.13.3 版本,scipy 为 0.19.1 版本

3.4安装兼容的matplotlib

conda install matplotlib==2.0.2

3.5安装兼容的pandas

conda install pandas==0.20.3

3.6安装兼容的Pillow

conda install pillow==4.2.1

3.7安装兼容的Keras版本

注意,1.0需要单独安装Keras,因为tensorflow没有内置进去。

conda install keras==2.1.6

3.8安装兼容的CUDA

conda install cudatoolkit==10.0.130

3.9安装兼容的CUDNN

conda install cudnn==7.6.0

到此,tensorflow1.14.0的环境就搭建好了,而且tensorflow是可以用GPU进行加速的。(没有安装到的其他的一些包,大家可以自行安装,需要注意的就是版本兼容,一定找到确定兼容的版本再进行安装)

4.直接导入本人的TensorFlow1.14.0的环境(不需要自己配置,一行代码搞定)

请参考我的另一篇博客,有详细的介绍。点击跳转


😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃😃

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值