为满足安全标准而提供的ADAS Inspector Solution

 

ADAS和无人驾驶及SOTIF

为满足安全标准而提供的ADAS Inspector Solution

ISO/PAS 21448:2019 (Road vehicles - Safety of the intended functionality)

加强汽功能安全ISO 26262关于无人驾驶功能验证检查内容, "预期功能安全"Safety of the Intended Functionality, SOTIF标准ISO/PAS 21448应运而生。

 ISO 21448除补充完善了ISO 26262中缺失的关于自动驾驶车辆开发的细节规定外,也有ISO 26262中未提及到的部分。

随着汽车系统自动化的不断发展,新的安全问题也随之而来。假如在有Systematic failures或Random failures的情下,系统的预期功能可能致危况发生的话,那应该怎么办呢这样的问题在ISO 26262并未提及。ISO 26262功能安全(Functional safety)的定是功能安全到的状态。 ISO 26262第2版也继续将重点放在了为对应安全相关风险(risk)而进行的统级安全机制设计和硬件及件的技和制作上。

SOTIF(Safety Of The Intended Functionality: ISO/PAS 21448:2019)标准与功能安全不同,其探讨的并非是因运转不正常、故障、缺陷导致的安全问题,而是探讨预期设计不充分、不合理的情况以此来确认预期设计本身的安全性。 例如,我们可以假设一种情况,无人驾驶时由于传感器的性能问题而导致该停车时却还在行驶。如果您是一位开发level 3以上无人驾驶系统的工程师,那么您非常有必要关注ISO 26262第二版和ISO/PAS 21448:2019。

在2019年1月发行的长达54页的ISO/PAS 21448:2019文件中,针对达成SOTIF所需的适用设计、确认及验证方法提出了相应的参考指南
"The absence of unreasonable risk due to hazards resulting from functional insufficiencies of the intended functionality or by reasonably foreseeable misuse by persons is referred to as the Safety Of The Intended Functionality (SOTIF).)"

制定SOTIF的动机是即使在车辆的硬件或软件没有故障的情况下,也要防止在ADAS或无人驾驶车辆(Autonomous Vehicles, AV)中出现不合理的危险(Unreasonable risk)。硬件遵守ISO 26262,件上有Bug,因此就判断整体是安全的,但实际上即便如此,ADAS和无人驾驶会在某种情况下发生错误然,ISO 26262制定者也相信ISO 26262不足以完全地保障安全。我们已目睹了去年步自动驾驶事故等因自动驾驶术引起不当操作生的事故。

现实中,即使车辆上的软件和硬件都遵守ISO 26262,但却因感器或系的性能限制、意想不到的道路化、司机误操作而生事故的例子有很多。另外,仅通过单纯的机械学习(Machine Learning, ML)算法也有可能无法准确掌握现实情况
SOTIF标准在2016年的法巴黎会议后,又经过了2017韩国和以色列、2018年美、意大利会议,重新修订为适用于指导SAE无人驾驶等1、2的ISO/PAS 21448。

预期功能安全(SOTIF)会议于今年3月在上海再次召开会议是SAE自动驾驶3~5级所必需的SOTIF的技术内容,而ISO 21448将是此内容标准化的成果。此,会议讨论了"Machine Learning"、"HD地"、"Validation Target"、"Minimum Risk Condition"、"AI要求事"、"Driving Policy"等多并计划将其放于ISO 21448草案(Draft)中。

SOTIF最大难题便是对于无人驾驶的经验不足更大的难点是标准化制定小组必须紧跟快速发展变化的技术。即使在硬件和软件无异常的情况下,ADAS或无人驾驶车辆也会有可能在实际行驶中做出危险操作。例如◆ 基于AI的系统无法准确理解场景并保证做出安全操作,即算法不具备理解当前场景的多样条件。◆ 很难确信现有的传感器组成中具备确保驾驶安全的性能,即现还不具备充分应对多样操作条件的传感器。◆ 让司机用自化功能的不良HMI(Human Machine Interfaces),即司机未注意警告或告的情

SOTIF识别险条件的框架,是直到其为可接受的危险为止持续确认并验证操作的方法。但是,少不人知的不安全非易事。考虑到现实因素,SOTIF要求行模拟试验和充分的实车测试

应对未来无人驾驶的具体指南

ISO 26262会议中,以微弱的差距决定制定SOTIF怀其必要性提出了疑。SOTIF提供"思考安全的方法", 提供找出危害自动驾驶原因的方法。

SOTIF制定小组在初期做出了以下几项决定。

第一,SOTIF不包含于ISO 26262之中,而是另外制定例如ISO 21448此类的标准

第二,虽然在制定小组内部存在SOTIF只针对等级2级的汽车(现有OEM优先选择)还是针对等级3~等级5的汽车(技术企业的积极游说)的两种意见,但最终决定包含等级3~等级5的汽车。

第三,关于SOTIF应用的争论仅限于处于最终生产阶段的无人驾驶系统。一部分支持论者主张已经上路的无人驾驶测试车辆可以不用严格遵守SOTIF。 制定小组已制定了针对测试车辆只适用于ISO 21448部分要求事项的妥方案,目前正在讨论针对测试车辆的要求事。机械学习目前在SOTIF的附属资料中有所涉及。自动驾驶术为了物体的识别和分,通常要求几种类型的机械学习。机械学习训练可能引起系性缺陷。该过程对车辆的安全行非常重要,因此有必要按照安全开发数据收集及学习注意收集到的据的无意偏差或歪曲等可能性

可以
,除了算法之外,人工智能的成败还要由库来决定。 人工智能在识别理道路上生的无限场景的工作上尤必要。机械学习于无人驾驶车辆安全的讨论中重要的争论焦点, 一些SOTIF成希望日后讨论机械学习,也有一部分成希望能够同步讨论机械学习和安全问题,但是也有部分成员认为,机械学习标准化还为时过早,并且指出了严格的标准最终会阻碍创新。 与之相反,也有些人希望及时出台相应指南标准以确认和验证基于AI的车辆。虽然两个阵营存在意见差异,但一致认为作为监视AI安全状况的卫士,我们有必要监视掌控一切异常情况

IEEE电气与电子工程师协会针对无人驾驶正在制定有关AI的几项新的标准。即使确认和验证了高度自动化(Highly Automated)的汽车只需花费数小时来测试,但也不可能无限期地重复测试。无人驾驶领域准要求车辆遵守的一系列规则的"测试"和"公式接近法"的合。通常来说这种公式接近法中包括Mobileye提议的责任敏感安全’(responsibility-Sensitive Safety, RSS)模型。RSS模型是根据事先定的一系列"缺陷明确规则"明确事故动驾驶汽车数学模型。

 SOTIF结论应该知道在理解现实场景方面ADAS及无人驾驶的局限性。例如,感器合在件和硬件上问题的情下也会导致自动驾驶误启动
 

目前,在SOTIF中尚未解决的问题有: 改善理SOTIF危的功能;SOTIF "Metrick"的定/接受准; SOTIF的确验证(V&V)基于场景的测试指南&了机械学习扩大SOTIF内容线下HD地的影、模拟环境的适性确等。

 

结论

车领域为开发出符合ISO 26262标准的安全系,正在引安全流程。 流程将重点放在了应对因E/E故障导致的不合理风险上。 但是,这种的安全不仅与E/E故障引起的故障行为(malfunction behaviours)有,也与驾驶者预见的功能用、感器或系性能局限或意想不到的道路化有


SOTIF车辆E/E统在没有故障的情生的其他不合理的风险为重要。安全准ISO/PAS 21448提供了应对这问题的指南。

OEM确保直到L3自动驾驶汽车充分进行了车向识别、行目的地地图识别实际距离的件识别、信号识别和多的城市中心和郊区的车辆驶环件识别相关的实车验证后才能驶入无管制的街道。

Suresoft验证Tool Chain对车辆现有核心控制器按照功能安全要求行各种测试 设计验证各种控制器及验证Source Code错误为目的,以SOTIF要求的实车道路行驶实测数,致力于更安全、更致的错误检查然当前国际认证层面详细的安全标准对发展快速的技术的应对如人意,但汽车开发公司批量生产开发前一段的准确、致的检验测试应仍应必要件。

此,必须构建强大的法律体系,强制相关行业按照ISO 26262功能安全开发控制器,容纳格的SOTIF准,要求进行驶环试验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值