规划求值算法-求满足条件的组合

目录

规划求值算法-求满足条件的组合

问题描述

思路

实现

SolverModelUtils 类

SolverModelResultl类

测试


规划求值算法-求满足条件的组合

问题描述

元素个数在100以内的整数集合(允许有重复的元素),求满足累加(或累减、或累乘)的结果小于等于X的所有组合的列表? 要求:

  1. 每个元素只允许使用一次
  2. 所有元素都至少被使用一次
  3. 优先取等于X的组合,如果剩余的所有组合都不等于X,则按照组合的结果从大到小顺序取组合
  4. 相同值的组合可任意选择一个。

例如:

  • 元素集合: [14, 4, 5, 3, 11, 2, 10, 4, 6, 13],X=15,运算方法是为累加
  • 正确的结果:[2, 13], [11, 4], [5, 10], [14], [4, 3, 6]

思路

  1. 找出所有的的组合(过滤掉完全不满足的组合)
  2. 按照约定的规则排序
  3. 对排序后的结果,按照一个元素只使用一次的方式取出组合。

实现

SolverModelUtils 类


package io.github.feiyizhan;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
import java.util.function.BiFunction;
import java.util.function.BinaryOperator;
import java.util.function.Predicate;
import java.util.function.Supplier;
import java.util.stream.Collectors;

/**
 * 规划求值工具类
 * @author 徐明龙 XuMingLong 2021-02-22
 */
public class SolverModelUtils {


    /**
     * 规划求值
     * @author 徐明龙 XuMingLong 2021-02-22
     * @param initCost
     * @param calcCost
     * @param sortCost
     * @param combineCost
     * @param filterCost
     * @param itemList
     * @return java.util.List<com.expertsplatform.commons.pojo.result.SolverModelResult<C,E>>
     */
    public static <C,E> List<SolverModelResult<C,E>> solverModel(Supplier<C> initCost,
        BiFunction<C,E,C> calcCost, Comparator<C> sortCost, BinaryOperator<C> combineCost, Predicate<C> filterCost,
        E... itemList){
        List<SolverModelResult<C,E>> resultList = new ArrayList<>();
        int len = itemList.length;
        for(int i=0;i<len;i++){
            //准备初始结果
            C cost = initCost.get();
            E item =itemList[i];
            cost = calcCost.apply(cost,item);
            List<E> items = new ArrayList<>();
            items.add(item);
            int[] itemIndexes = new int[len];
            itemIndexes[0] = i;

            SolverModelResult<C,E> initResult = new SolverModelResult<>();
            initResult.setCost(cost);
            initResult.setItemList(items);
            initResult.setItemIndexes(Arrays.copyOf(itemIndexes,items.size()));
            resultList.add(initResult);
            solverModel_1(resultList,initResult,i,initCost,calcCost,combineCost,filterCost,itemList);
        }



        //获取最终结果
        E [] itemListBak = Arrays.copyOf(itemList,itemList.length);

        resultList = resultList.stream()
            //排序
            .sorted((r1,r2)->sortCost.compare(r1.getCost(),r2.getCost()))
            //过滤
            .filter(r->{
                int[] itemIndex = r.getItemIndexes();
                boolean hasAny = false;
                for(int index:itemIndex){
                    if(itemListBak[index]==null){
                        hasAny = true;
                        break;
                    }
                }
                if(hasAny){
                    return false;
                }else{
                    for(int index:itemIndex){
                        itemListBak[index]=null;
                    }
                    return true;
                }
            }).collect(Collectors.toList());

        return resultList;
    }

    /**
     * 规划求值的递归处理
     * @author 徐明龙 XuMingLong 2021-02-22
     * @param resultList
     * @param initResult
     * @param begin
     * @param initCost
     * @param calcCost
     * @param combineCost
     * @param filterCost
     * @param itemList
     * @return void
     */
    private static <C,E> void solverModel_1(final List<SolverModelResult<C,E>> resultList,final SolverModelResult<C,E> initResult,int begin,
        Supplier<C> initCost,BiFunction<C,E,C> calcCost,BinaryOperator<C> combineCost, Predicate<C> filterCost,
        E... itemList){

        int len = itemList.length - begin -1;
        if(len<=0){
            return;
        }
        for(int j=0;j<len;j++){
            int index = j+begin+1;
            //准备每一步的初始
            SolverModelResult<C,E> beginResult = cloneResult(initResult,initCost,combineCost);
            C cost =beginResult.getCost();
            List<E> items = beginResult.getItemList();
            int[] itemIndexes = new int[itemList.length];
            System.arraycopy(beginResult.getItemIndexes(),0,itemIndexes,0,items.size());
            E item =itemList[index];
            items.add(item);
            cost = calcCost.apply(cost,item);
            itemIndexes[items.size()-1] = index;
            beginResult.setCost(cost);
            beginResult.setItemList(items);
            beginResult.setItemIndexes(Arrays.copyOf(itemIndexes,items.size()));
            // 1+2,1+3,1+4...
            if(filterCost.test(cost)){
                resultList.add(beginResult);
            }
            solverModel_1(resultList,beginResult,index,initCost,calcCost,combineCost,filterCost,itemList);
        }

    }

    /**
     * 复制一个新的结果
     * @author 徐明龙 XuMingLong 2021-02-22
     * @param result
     * @param initCost
     * @param combineCost
     * @return com.expertsplatform.commons.pojo.result.SolverModelResult<C,E>
     */
    private static <C,E> SolverModelResult<C,E> cloneResult(SolverModelResult<C,E> result,
        Supplier<C> initCost, BinaryOperator<C> combineCost){
        SolverModelResult<C,E> newResult = new SolverModelResult<>();
        newResult.setCost(combineCost.apply(initCost.get(), result.getCost()));
        newResult.setItemIndexes(Arrays.copyOf(result.getItemIndexes(),result.getItemIndexes().length));
        List<E> itemList = new ArrayList<>();
        itemList.addAll(result.getItemList());
        newResult.setItemList(itemList);
        return newResult;
    }
}



SolverModelResultl类

package io.github.feiyizhan;

import lombok.Data;

import java.util.List;

/**
 * 规划求值的结果
 * @author 徐明龙 XuMingLong 2021-02-22
 */
@Data
public class SolverModelResult<C,E> {
    /**
     * 成本
     * @author 徐明龙 XuMingLong 2021-02-07
     */
    private C cost;
    /**
     * 元素个数
     * @author 徐明龙 XuMingLong 2021-02-07
     */
    private List<E> itemList;

    /**
     * 元素的下标列表
     * @author 徐明龙 XuMingLong 2021-02-08
     */
    private int[] itemIndexes;
}


测试

    @Test
    public void test_sum2(){
        int size = 10;
        Integer[] data = new Integer[size];
//        data= Arrays.asList(14, 4, 5, 3, 11, 2, 10, 4, 6, 13).toArray(data);
        for(int i=0;i<size;i++){
            data[i] = RandomUtil.randomInt(1,16);
        }
        Console.log(data);
        final int target = 15;
        Comparator<Integer> sortCost = (r1,r2)->{
            if(r1==target){
                return -1;
            }
            if(r2==target){
                return 1;
            }
            return r2.compareTo(r1);
        };
        List<Result<Integer,Integer>> resultList = solverModel(()->Integer.valueOf(0),(c,e)->c+e,
            sortCost, (c1,c2)->c1+c2, c->c<=target,
            data);
        Console.log("最终满足条件的组合个数:{}",resultList.size());
        Console.log(resultList);
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值