乘风领航、耀世创新——DEFI平台Lizard打造数字金融新世界

自2008年之后,挖矿一词被赋予了新的含义,不再是指矿工开采矿产从而获得财富的过程,而变成了挖取数字货币的过程,而随着Compound及Balancer项目的上线,挖矿热度爆增。DeFi总锁仓量于2021年05月11日突破了1344亿美元,对比2020年6月DeFi总锁仓量突破10亿美元大关,一年时间,增长了约134倍。DeFi爆炸性发展的背后,除了本身的蓬勃发展,还有NFT、元宇宙等概念的崛起,但最为核心的,是引入了流动性挖矿。

通过流动性激励,按照加密算法来分配治理代币,通常是开启去中心化区块链的常见方法。这种方式可以吸引流动性提供者为协议提供流动性,开展新代币的“挖矿”。

随着DeFi生态的发展,以及跨链桥、多链并行等的技术革新,推动了DeFi应用程序突破了众多限制,流动性矿工通常会在不同协议之间频繁转移资金,以获取更高的收益。

Lizard是采用流动性挖矿机制,多链并行,且首发币安智能链BSC的一个去中心化平台,同时也是一个基于智能合约协议与DeFi区块链金融基础设施所构建的流动性交易聚合生态平台,由区块链行业顶级加密技术人员与华尔街顶级金融从业者共同发起。用户可通过Lizard智能合约协议24小时享受安全、可信、平等的金融基础服务的同时,进行流动性挖矿,获取LIZ代币奖励。

代码即法律,智能合约是“执行合约条款的计算机交易协议”,其特点是开放透明,区块链上的所有用户都可以看到基于区块链的智能合约。当在链上部署智能合约时,它将创建一个永久存在于区块链中的合同地址。

Lizard在技术开发上,结合当下传统DeFi存在的产品单一不成体系;操作复杂,门槛提高,用户体验感差等难点,搭建了一个去中心化的公共金融服务平台,目标是创造DeFi世界无抵押贷款的可信环境系统,该系统将传统金融工具的模型组合到基于公共区块链和智能合约的单一基础架构中。用户可以获得不同加密货币形式的存/取款,未来也可以通过加密货币发放贷款并赚取利息;同时,用户还能获得LIZ数字通证作为维持Lizard金融大生态系统的网络效应奖励。

截止至2021年8月,Lizard的智能合约已通过美国安全公司CertiK的安全代码审计,保障了用户资产的安全。

相比中心化平台及类似区块链金融平台,Lizard存在五大核心差异化亮点。首先,一键式挖矿、简单安全,通过智能合约代码开源,完全审计;其次,资金安全,谁存谁出,随存随取,在技术上实现无需通过前端DAPP便可进入产品系统;第三,支持多种主流币与稳定币,保障足够的流动性,保持资金周转率高;第四,优越的经济模型,稳定的挖矿利率,APY收益水平领先行业,可实现BTC、ETH等20多种加密主流币的跨链投资支持流动性挖矿;第五个方面,在Lizard中,用户可以参与无损挖矿、LP组合挖矿,而且“无门槛、成本低、风险低”,用户容易高度共识。

目前,全球区块链技术开发者正努力探索区块链的应用方向及服务模式,去中心化组织、去中心化金融、去中心化应用等新兴领域应运而生,并快速在全球区块链行业中取得广泛应用。除代币经济、BaaS、基于区块链的SaaS等基础商业模式外,区块链行业正着力发展如数字货币挖矿、区块链开源平台、DAO、NFT、DeFi、DApp等商业模式。Lizard抓住行业发展趋势,筹划3-5年逐步实施并聚合包括Lizard、LEND、SWAP、VAULT、INSURE、NFTSYSTEM、DERIVATIVES以及DAO等金融类产品矩阵应用与金融衍生品,利用LIZ代币承载LIZ社区治理权利的功能,努力为社区用户提供一个”参与门槛低、操作便捷、收益稳定、开放公平”的金融数字新世界。

基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明,该项目是个人毕设项目,答辩评审分达到98分,代码都经过调试测试,确保可以运行!欢迎下载使用,可用于小白学习、进阶。该资源主要针对计算机、通信、人工智能、自动化等相关专业的学生、老师或从业者下载使用,亦可作为期末课程设计、课程大作业、毕业设计等。项目整体具有较高的学习借鉴价值!基础能力强的可以在此基础上修改调整,以实现不同的功能。 基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指挥8种手势识别源码+数据集+模型+详细项目说明基于pytorch实现中国交通警察指
内容概要:本文档详细介绍了Python反爬虫技术的各种应对策略,包括基础和高级方法。基础部分涵盖User-Agent伪装、IP代理池、请求频率控制等,其中涉及使用fake_useragent库随机生成User-Agent、设置HTTP/HTTPS代理、通过随机延时模拟正常访问行为。动态页面处理方面,讲解了Selenium和Pyppeteer两种自动化工具的使用,可以用于加载并获取JavaScript渲染后的网页内容。对于验证码问题,提供了OCR识别简单验证码、Selenium模拟滑块验证码操作以及利用第三方平台破解复杂验证码的方法。登录态维持章节介绍了如何通过Session对象保持登录状态,并且演示了Cookie的保存与读取。数据加密对抗部分探讨了JavaScript逆向工程和WebAssembly破解技巧,如使用PyExecJS执行解密脚本。最后,高级反爬绕过策略中提到了WebSocket数据抓取和字体反爬解析,确保能够从各种复杂的网络环境中获取所需数据。 适合人群:有一定Python编程经验,从事数据采集工作的开发人员。 使用场景及目标:①帮助开发者理解并掌握多种反爬虫绕过技术;②为实际项目中的数据抓取任务提供有效的解决方案;③提高爬虫程序的成功率和稳定性。 其他说明:在学习过程中,建议结合具体案例进行实践,同时注意遵守网站的robots协议及相关法律法规,合法合规地进行数据采集活动。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值