无线系统(EEEN3006J-Wireless Systems)复习笔记 (3)

目录

前言

Chapter 3: Wireless System

1. 电荷(charge)

2. 静电学(Electrostatics)

2.1 库仑定律(Coulomb’s law)

2.2 电场(Electric field)

3.麦克斯韦方程组(Maxwell’s Equations)[很重要!!!]

 3.1 电场的高斯定律 

3.1.1 高斯定律的积分形式

3.1.2 点积与场通量(Dot product and flux of a field)

3.1.3 一些基本电场(Some basic electric fields)

3.1.5 高斯定律的微分形式(Differential form of Gauss’s law)

3.2 磁场的高斯定律

3.2.1 磁场高斯定律的积分形式(Integral form of Gauss’s law)

3.2.2 一些基本磁场(Some basic magnetic fields)

3.2.3 磁场高斯定律的微分形式(Differential form of Gauss’s law for magnetic fields)

3.3 Nabla —— 接线员

3.3.1 Nabla 与散度

3.3.2 其他坐标系中的散度

3.4 法拉第定律(FARADAY’S LAW)

3.4.1 法拉第定律的积分形式(Integral form of Faraday’s law)

3.4.2 楞次定律(Lenz’s Law)

3.4.3 法拉第定律的微分形式(Differential form of Faraday’s law)

3.4.4 电场中的曲率(Curl of the electric field)

3.5 安培-麦克斯韦定律(THE AMPERE-MAXWELL LAW)

3.5.1 安培-麦克斯韦定律的积分形式(Integral form of the Ampere-Maxwell law)

3.5.2 磁场循环(Magnetic field circulation)

3.5.3 安培-麦克斯韦定律的微分形式(Differential form of Ampere-Maxwell law)

3.5.4 磁场的旋度(Curl of the magnetic field)

3.5.5 电流密度(Electric current density)

 4. 从麦克斯韦方程到波动方程(FROM MAXWELL’S EQUATIONS TO THE WAVE EQUATION)

4.1 麦克斯韦方程(Maxwell’s Equations)

4.1.1 散度(或高斯)定理

4.1.2 斯托克斯定理(Stokes theorem)

4.2 坡度(Gradient)

4.2.1 一些有用的关系:

4.2.2 波动方程(The wave equation)


前言

本笔记是基于北京都柏林学院2022年EEEN3006J-Wireless Systems课程课件总结出的笔记。任课教师为Dr. Declan Delaney.

扩展阅读:

• 如果你想了解更多,我推荐格里菲斯(Griffiths)。

• 谢伊(Schey)还以对该主题的温和介绍而闻名。

Chapter 3: Wireless System

四种力:强的,电磁的,弱的,引力的。

• 我们只对电磁学感兴趣,这是我们最了解的,也是我们的技术最常用的。

• 它被表述为场理论。如果我们在某些分布中收集了一些电荷,它们会在其他点对电荷施加什么力量?

1. 电荷(charge)

•电荷是量化的。

        -任何物体上的电荷都是e的倍数,即质子上的电荷。

• 两种类型:正面和负面。

        -负电荷的一个例子是电子,它带有电荷-e。

• 电荷被保存:不能创建或销毁,只能移动。

• 电荷单位为库仑(C)。

2. 静电学(Electrostatics)

• 电场描述了源电荷分布对测试电荷施加的力。

• 我们首先假设所有源电荷都是静止的。由此产生的理论被称为静电学。

2.1 库仑定律(Coulomb’s law)

库仑定律给出了单源电荷Q施加在电荷Q上的力。公式如下:

自由空间的介电常数,\varepsilon_0 = 8.85\times 10^{-12} C^2 N^{-1} M^{-2}

方向上的单位向量\overrightarrow{\vartheta } 为 , \overrightarrow{\vartheta } = \overrightarrow{r}-\overrightarrow{​{r}'}\overrightarrow{r }  为Q的位置,\overrightarrow{r'}为q的位置。

如果Q和q有相同的符号,施加的力是排斥的,否则是吸引的。

2.2 电场(Electric field)

如果我们有一组源电荷,施加在测试电荷上的力是库仑定律给出的每个源电荷的力的矢量和:

电场由公式Q\cdot \overrightarrow{E} = \overrightarrow{F}给出。它是位置向量的函数。

• 现在让我们考虑一种情况,我们用均匀分布的电荷代替空间中的离散点。

• 对于这种电荷的连续分布,总和成为电荷密度函数的积分:

3.麦克斯韦方程组(Maxwell’s Equations)[很重要!!!]

 3.1 电场的高斯定律 

在麦克斯韦方程组中,我们发现了两种电场。

        –由电荷产生的静电场。

        –由变化的磁场产生的感应电场。

• 高斯定律处理静电场。

        –它将静电场的空间行为与产生静电场的电荷分布联系起来。

高斯定律的积分形式

3.1.1 高斯定律的积分形式

• 左侧只是通过闭合表面S的电通量的数学描述。

        –电通量是电场线的数量。

3.1.2 点积与场通量(Dot product and flux of a field)

例如,考虑一个定义流体速度的场。通量是流经表面的流体量。

 点积允许我们计算垂直于表面的场的分量:它说明了场相对于表面的角度。

3.1.3 一些基本电场(Some basic electric fields)

• 用电场的高斯定律可以解决两个基本问题:

1.给定电荷分布的信息,你可以通过包围电荷的表面找到电通量。

2.给定通过表面的电通量信息,你可以找到被表面包围的总电荷。

练习:

1. 电荷密度为10^{-12} C/m的线穿过球体的中心。如果通过球体表面的通量为1.13\times 10^{-13} Vm,求出球体的半径。

 

解决方案:

• 如果球体的半径为 r,则其内部有 2\times r m的直线。

• 因此,总封闭电荷为 2\times r\times 10^{-12}C

• 磁通量是封闭电荷除以自由空间的介电常数

1.13\times 10^{-3} =\frac{ 2\times r \times10^{-12}}{8.85\times 10^{-12}}

• 求解r,我们得到r = 5 \times 10^{-3} m

2. 电荷密度为λ的无限长线电荷在距离r处的电场由下式给出:

 

•用这个表达式来求无限长线电荷的有限部分h周围圆柱体的电通量。

•使用高斯定律验证封闭电荷实际上是λh。

解决方案:

• 我们想要评估表达式 在一个圆筒上。将问题分为顶部、底部和侧面是最简单的。

• 然而,电场垂直于无限电荷线,因此垂直于圆柱体顶部和底部的法线。剩余期限为:

 3. 在某些情况下,我们可以通过电荷分布找到\overrightarrow{E} 。

这些情况总是涉及特殊的对称性,允许我们将电场项置于高斯电场定律积分之外。

•示例:确定半径为1m且均匀电荷密度ρC/m3的球体周围的电场。

解决方案:

• 由于装置的对称性,电场必须是径向的。(从任何角度来看,问题都是一样的。)

• 我们需要仔细选择积分曲面。

        –电场必须在所有点平行或垂直于法线。

        –所有点的电场必须均匀。

        –这种曲面称为特殊高斯曲面。

        –这里只有与带电球体同心的球体。

3.1.5 高斯定律的微分形式(Differential form of Gauss’s law)

• 处理单个点而不是表面上的场发散和电荷密度。

• 在不同情况下对积分形式有用。

3.2 磁场的高斯定律

• 与形式上的电场定律相似,但差异显著。

• 可以表述为:通过封闭表面的总磁通量为零。

• 结果:没有磁单极子。(它们是理论化的,但尚未被观察到。)

• 磁力线总是形成回路。

3.2.1 磁场高斯定律的积分形式(Integral form of Gauss’s law)

 •左侧只是通过闭合表面S的磁通量的数学描述。

        – 磁通量是指磁场线的数量。

3.2.2 一些基本磁场(Some basic magnetic fields)

 \mu _0是自由空间的渗透率(permeability)。

练习:

•将一个封闭的圆柱体放置在由以下公式给出的磁场中:

如果圆柱体的轴沿z轴对齐,则求出

        –(i)穿过顶面和底面的磁通量

        –(ii)穿过圆柱体的曲面的磁通量。

解决方案:

• 此题解题关键是要注意:

\Phi _{B,top} + \Phi _{B,bottom} +\Phi _{B,curvedsurface} =0

对于顶面来说,,由此可得出:

\Phi _{B,top} = \int _{S} -B_0 da = -B_0\pi r^2

 同理对于底面来说,,由此可以得出:

\Phi _{B,top} = \int _{S} B_0 da = B_0\pi r^2

 通过以上三个式子,我们可以得出:

\Phi _{B,curvesurface} = 0

3.2.3 磁场高斯定律的微分形式(Differential form of Gauss’s law for magnetic fields)

 No sources , no sinks。

练习:

•磁场由以下公式给出:\overrightarrow{B} = axz\hat{i} + byz \hat{j} +c\hat{k}

.证明: 磁场的高斯定律的结果是a和b不能有独立的值。

解决方案:

\overrightarrow{\triangledown }\circ \overrightarrow{B} = 0

\frac{\partial }{\partial x}(axz)+\frac{\partial }{\partial y}(byz)+\frac{\partial }{\partial z}(c) =0

az+bz +0 =0

a = -b

3.3 Nabla —— 接线员

• Nabla 是向量微分算子。

• 其衍生品的说明。

        – \overrightarrow{\triangledown }\circ 是散度

        – \overrightarrow{\triangledown }\times是旋度

        – \overrightarrow{\triangledown }是梯度

• 表达式为:

3.3.1 Nabla 与散度

• 在物理学的许多领域都很重要。

• 当通量和散度处理场的流动时,通量是在一个区域上定义的,而散度处理点。

–正散度->发散

–负散度->汇聚

•可以认为是极限流量与体积的比率:

•更有用的形式:

•散度为标量:没有方向。

3.3.2 其他坐标系中的散度

球面坐标:

 圆柱坐标:

 

练习:

给定以下电场,计算x=2m 和 x=5m时的电荷密度。

解决方案:

(i)x =2m :

 (ii)x=5m :

电场是恒定的,所以所有的导数都是0。因此\rho = 0 \, C/m

3.4 法拉第定律(FARADAY’S LAW)

• 1831年,法拉第进行了许多重要实验。

• 他证明了时变磁场可以在电路中感应电流。

• 这种感应电场与我们在上一节课中讨论的静电场大不相同。

3.4.1 法拉第定律的积分形式(Integral form of Faraday’s law)

 • 仅在\overrightarrow{E}表示每个段 dl 的静止帧中的电场的情况下正确。

• 时间导数作用于磁场,而非磁通量。

• 略有不同的E——在实验室参考框架中测量。

以上公式可以解决两类问题:

1.给出磁通量变化的信息,求出感应电动势。

2.给定沿给定路径的感应电动势,可以求出磁场的时间导数、方向或路径所包围的区域。

• 高度对称的情况提供了与之前等式相同的其他可能性。

电场:

•没有源或汇。

•场线形成回路。

电磁场的循环-emf:

• 对于A电场场,\oint_{C}^{} \overrightarrow{A}\circ d\overrightarrow{l} 是循环的。

• 电场的循环称为电动势。

• 在闭合回路C周围移动单位电荷所做的工作。

3.4.2 楞次定律(Lenz’s Law)

•磁场变化产生的电流总是与磁通量的变化相反。

•即使不存在导电路径也适用

        –没有电流流动,但电场仍在循环。

练习:

• 给出磁场随时间变化的表达式,找出指定大小回路中感应的电动势。

 • 方形回路,L m侧位于xy平面,一个角位于原点。

解决方案:

通过楞次定律:

 其中, \hat{n} = \hat{z} 且 da = dx dy. 由此可得:

 

3.4.3 法拉第定律的微分形式(Differential form of Faraday’s law)

 • 循环电场由时变磁场产生。

3.4.4 电场中的曲率(Curl of the electric field)

电场中的曲率可以被定义为:

 更常用的格式是:

每个分量表示磁场在一个坐标平面内旋转的趋势。

•电场线无法返回其自身。

•因此,围绕一个循环进行积分得到0。

        –因此,偶极子场和所有静电场一样,没有旋度。

练习:

某一区域的磁场由下式给出:

a) 求出感应电场的旋度。

b) 已知磁场的z分量为零。找到场中的x分量。

解决方案: 

a) 通过法拉第公式

 

 b) 通过旋度的定义:

•在感应电场由以下公式给出的位置,求出磁场随时间的变化率:

 解决方案:

 

3.5 安培-麦克斯韦定律(THE AMPERE-MAXWELL LAW)

• 当麦克斯韦开始这一领域的研究时(19世纪50年代),安培定律已经广为人知。

• 然而,它仅适用于涉及稳定电流的静态情况。

• 麦克斯韦增加了另一个源项——变化的电通量——并将安培定律的适用范围扩展到时变场。

3.5.1 安培-麦克斯韦定律的积分形式(Integral form of the Ampere-Maxwell law)

                

 

3.5.2 磁场循环(Magnetic field circulation)

•沿一些闭合路径C添加B的向量分量。\oint_{C}^{} \overrightarrow{B}\circ d \overrightarrow{l}

•可以定义特殊的安培循环来提取B,就像特殊的高斯曲面一样。

 为什么需要麦克斯韦的修正?

 •例如,考虑一个充电电容器(否则 I_{enc} = 0)。

•两种情况下C相同,但S的选择不同。

•使用安培定律获得封闭电流的截然不同的答案。

•板之间没有电流通过。

•还有什么能产生变化的M?

•极板之间的电场和通量随时间而变化。

•通过仔细选择S,可以获得特殊的高斯曲面(E⊥ S、 E常数大于S。)

 •因此,电通量随时间的变化率如下所示:

 •请注意,\frac{dQ}{dt}的单位为安培,即电流单位。因此,我们定义位移电流如下:

(出于历史原因,我们将该数量称为位移电流。实际上没有电荷流过S。)

•这是加入安培定律的麦克斯韦术语。

3.5.3 安培-麦克斯韦定律的微分形式(Differential form of Ampere-Maxwell law)

 • 循环磁场由电流和时变电场产生。

3.5.4 磁场的旋度(Curl of the magnetic field)

• 所有磁场线形成回路。

• 任何此类非零场必须具有场的路径积分非零的区域。

• 回想一下,无限线电荷产生的磁场是:

 •该场的旋度很容易在柱坐标中计算。【这留作线下练习。结果可能会让你大吃一惊。】

3.5.5 电流密度(Electric current density)

•通过垂直于磁场的单位横截面积的矢量电流。

•单位为 A/m^2

•电流和电流密度之间关系的复杂性取决于情况的几何形状。

•对于制服J,I = JA. A是横截面积。

•更一般地说,电流是电流密度的通量。

 练习:

• 电容器C使用上述电路充电。给定其磁场(如下),求出电容器极板之间的位移电流密度。

解决方案:

• 在圆柱坐标中使用B的旋度

\overrightarrow{\triangledown }\times \overrightarrow{B} = (\frac{1}{r}\frac{\partial B_z }{\partial \varphi } - \frac{\partial B_\varphi}{\partial z})\hat{r} + (\frac{\partial B_r}{\partial z} - \frac{\partial B_z}{\partial r})\hat{\varphi } + \frac{1}{r} (\frac{\partial (rB_\varphi)}{\partial r} - \frac{\partial B_r}{\partial \varphi }) \hat{z}

• 没有传导电流,所以:

 •​​​​​​​ 因此:

 

 4. 从麦克斯韦方程到波动方程(FROM MAXWELL’S EQUATIONS TO THE WAVE EQUATION)

4.1 麦克斯韦方程(Maxwell’s Equations)

• 麦克斯韦的成就超出了方程式的综合,或将位移电流项添加到安培定律中。

• 正是通过综合考虑这些方程,他发展了一个全面的电磁学理论。

• 在本节中,我们将展示如何从这些方程转换到波动方程。

4.1.1 散度(或高斯)定理

• 这仅适用于场及其一阶导数均连续的情况。

• 将高斯定律的积分和微分形式联系起来。

4.1.2 斯托克斯定理(Stokes theorem)

• 这仅适用于场及其一阶导数均连续的情况。

• 涉及法拉第定律的积分形式和微分形式。

• 关联安培-麦克斯韦定律的积分和微分形式。

4.2 坡度(Gradient)

• 涉及del的第三种操作。

• 适用于标量字段。

 • 现场每个点的坡度方向和陡度。

4.2.1 一些有用的关系:

• 梯度的旋度始终为零

 • 拉普拉斯:

 

• 我们可以使用这些,例如获得泊松方程。

• 散度的梯度(Gradient of Divergence)减去拉普拉斯算子(Laplacian)就是旋度的旋度(Crul of Crul)。

4.2.2 波动方程(The wave equation)

• 法拉第定律:

 

 • 两边都求旋度。

 • 安培麦克斯韦定律和高斯定律给出了:

 • 在无电荷和电流区域 \rho =0 且 \overrightarrow{J} =0

 • 该线性二阶齐次偏微分方程描述了波的传播。

•同样可以从安培-麦克斯韦开始,获得:

•一般来说,波动方程是:

 

所以我们可以计算出速率:

•这种与实验测定的光速的一致性导致麦克斯韦宣布它为e-m波。

 

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值