无线系统(EEEN3006J-Wireless Systems)复习笔记 (2)

目录

前言:

Chapter 2: Some preliminaries before we study Maxwell’s equations

1. 向量代数(Vector algebra)

1.1 点乘(Dot product)

1.2 叉积(Cross product)

1.3 三重积(Triple product)

1.4 坐标系(Co-ordinate systems)

2. 向量演算(Vector calculus)

2.1 梯度(Gradient)

2.2 散度(Divergence)

2.3 旋度(Crul)

 2.4 乘法规则(Product rules)

 3. 亥姆霍兹定理(Helmholtz theorem)

4. 电势(Potentials)

5. 积分学(Integral calculus)

5.1 直线积分(Integration over a line)

5.2 电荷和电流 (Charge and current)


前言:

本笔记是基于北京都柏林学院2022年EEEN3006J-Wireless Systems课程课件总结出的笔记。任课教师为Dr. Declan Delaney.

•在这堂课中,我们将回顾一些用于电磁理论的数学。

•这将帮助你在接下来的几节课中理解麦克斯韦方程组。

•根据麦克斯韦方程,我们将最终描述天线的工作原理。

Chapter 2: Some preliminaries before we study Maxwell’s equations

1. 向量代数(Vector algebra)

1.1 点乘(Dot product)

两个向量A和B的点积(或标量积或内积)由下式给出:

A\cdot B=\sum^n_{i=1}A_iB_i=A_1B_1+A_2B_2+A_3B_3+\cdots +A_nB_n

A\cdot B=\left \| A \right \|\left \| B \right \|cos\theta

1.2 叉积(Cross product)

可以使用右手法则获得点积的方向。

      

叉乘公式如下:

a\times b = \left \| a \right \|\left \| b \right \|sin\theta \cdot n

叉积计算平行四边形的面积,如图所示:

 

1.3 三重积(Triple product)

三重积公式如下:

a\cdot (b\times c)=b\cdot (a\times c)= c\cdot (a\times b)

三重积计算平行六面体的体积,如图所示:

1.4 坐标系(Co-ordinate systems)

•大多数人比较熟悉笛卡尔坐标。

•在本课程中,有时需要切换到球面极坐标或圆柱坐标以解决问题。

2. 向量演算(Vector calculus)

在处理电磁学时,我们更喜欢使用向量演算。

有三项重要的操作:

•梯度 •散度 •旋度

2.1 梯度(Gradient)

•适用于标量字段:

 •呈现出每个点的坡度方向和陡度。

练习:

村庄附近以m为单位的山的高度由函数描述:

h(x,y)=10(2xy-3x^2-4y^2-18x+28y+12)

x是村庄以东的距离,单位为km,y是村庄以北的距离。

问:

a) 找到山顶。

b) 这座山有多高?

c) 我想在村子北边1公里和东边1公里处建一栋房子。这里的山有多陡?

d) 此时,斜坡的走向是什么?

2.2 散度(Divergence)

•在物理学的许多领域都很重要。

•稍后我们将讨论电通量。通量和散度都处理场的流动,但通量是在一个区域上定义的,而散度处理点。

散度公式为:

标量:没有方向

散度 图像为发撒

散度 图像为汇聚

球坐标公式(Spherical co-ordinates):

\overrightarrow{ \triangledown }\circ \overrightarrow{A} = ( \frac{1}{r^2}\frac{\partial }{\partial r}(r^2A_r)+ \frac{1}{rsin\theta }\frac{\partial }{\partial \theta}(A_\theta sin\theta)+ \frac{1}{rsin\theta }\frac{\partial A_\phi }{\partial \phi})

柱坐标公式(Cylindrical co-ordinates:):

\overrightarrow{ \triangledown }\circ \overrightarrow{A} = ( \frac{1}{r}\frac{\partial }{\partial r}(rA_r)+ \frac{1}{r}\frac{\partial A_\phi }{\partial \phi}+\frac{\partial A_z }{\partial z})

练习:

计算下列函数的散度:

2.3 旋度(Crul)

可以被定义为:

\overrightarrow{\triangledown }\times \overrightarrow{A}=\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial }{\partial x}& \frac{\partial }{\partial y} & \frac{\partial }{\partial z}\\ A_x&A_y & A_z \end{vmatrix} \\= (\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z})\overrightarrow{i} +(\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x})\overrightarrow{j}+(\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y})\overrightarrow{k}

旋度的每个分量表示磁场在一个坐标平面内旋转的趋势。

 练习:

计算旋度:

 2.4 乘法规则(Product rules)

•梯度的旋度(Curl of Gradient)始终为零:

 拉普拉斯算子(即梯度的散度,Divergence of Gradient)

 我们可以使用这些来获得泊松方程(Poisson's equition)。(后面的博客中我们会讲到。)ヾ(o・ω・)ノ

散度的梯度(Gradient of Divergence)减去拉普拉斯算子(Laplacian)就是旋度的旋度(Crul of Crul)。

 3. 亥姆霍兹定理(Helmholtz theorem)

如果我们知道一个域的散度(divergence)和旋度(crul),你能唯一地定义这个域吗?

–不,我们还需要边界条件。

亥姆霍兹定理告诉我们,如果我们要求场在无穷远处为零,我们可以唯一地定义给定旋度(divergence)和散度(crul)的场。

4. 电势(Potentials)

如果一个场的旋度为零(我们会遇到很多场),那么这个场可以写成标量势的梯度。

\triangledown \times F = 0\Leftrightarrow F = -\triangledown V

5. 积分学(Integral calculus)

•线积分、面积分和体积积分

•微积分基本定理

•梯度的基本定理

•发散的基本定理

•卷曲的基本定理

•部件集成

5.1 直线积分(Integration over a line)

移动电荷a到b所做的总功

W = \int_{a}^{b} \overrightarrow{F} \cdot \overrightarrow{dl}

a到b每单位长度(直线方向)力的积分

5.2 电荷和电流 (Charge and current)

•电荷运动产生电流。

•电流单位为安培(A)

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值