《昇思25天学习打卡营第17天|DCGAN生成漫画头像》

#学习打卡第17天#

1. DCGAN原理

        DCGAN(深度卷积对抗生成网络,Deep Convolutional Generative Adversarial Networks)是GAN的直接扩展。不同之处在于,DCGAN会分别在判别器和生成器中使用卷积和转置卷积层。

        它最早由Radford等人在论文Unsupervised Representation Learning With Deep Convolutional Generative Adversarial Networks中进行描述。判别器由分层的卷积层、BatchNorm层和LeakyReLU激活层组成。输入是3x64x64的图像,输出是该图像为真图像的概率。生成器则是由转置卷积层、BatchNorm层和ReLU激活层组成。输入是标准正态分布中提取出的隐向量𝑧𝑧,输出是3x64x64的RGB图像。

2. 网络构造

        按照DCGAN论文中的描述,所有模型权重均应从mean为0,sigma为0.02的正态分布中随机初始化。

2.1 生成器

        生成器G的功能是将隐向量z映射到数据空间。由于数据是图像,这一过程也会创建与真实图像大小相同的 RGB 图像。在实践场景中,该功能是通过一系列Conv2dTranspose转置卷积层来完成的,每个层都与BatchNorm2d层和ReLu激活层配对,输出数据会经过tanh函数,使其返回[-1,1]的数据范围内。

可以通过输入部分中设置的nzngfnc来影响代码中的生成器结构。nz是隐向量z的长度,ngf与通过生成器传播的特征图的大小有关,nc是输出图像中的通道数。

import mindspore as ms
from mindspore import nn, ops
from mindspore.common.initializer import Normal

weight_init = Normal(mean=0, sigma=0.02)
gamma_init = Normal(mean=1, sigma=0.02)

class Generator(nn.Cell):
    """DCGAN网络生成器"""

    def __init__(self):
        super(Generator, self).__init__()
        self.generator = nn.SequentialCell(
            nn.Conv2dTranspose(nz, ngf * 8, 4, 1, 'valid', weight_init=weight_init),
            nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf * 8, ngf * 4, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf * 4, ngf * 2, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf * 2, ngf, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf, gamma_init=gamma_init),
            nn.ReLU(),
            nn.Conv2dTranspose(ngf, nc, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.Tanh()
            )

    def construct(self, x):
        return self.generator(x)

generator = Generator()

2.2 判别器

        判别器D是一个二分类网络模型,输出判定该图像为真实图的概率。通过一系列的Conv2dBatchNorm2dLeakyReLU层对其进行处理,最后通过Sigmoid激活函数得到最终概率。DCGAN论文提到,使用卷积而不是通过池化来进行下采样是一个好方法,因为它可以让网络学习自己的池化特征。

class Discriminator(nn.Cell):
    """DCGAN网络判别器"""

    def __init__(self):
        super(Discriminator, self).__init__()
        self.discriminator = nn.SequentialCell(
            nn.Conv2d(nc, ndf, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf, ndf * 2, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 2, gamma_init=gamma_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 4, gamma_init=gamma_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 'pad', 1, weight_init=weight_init),
            nn.BatchNorm2d(ngf * 8, gamma_init=gamma_init),
            nn.LeakyReLU(0.2),
            nn.Conv2d(ndf * 8, 1, 4, 1, 'valid', weight_init=weight_init),
            )
        self.adv_layer = nn.Sigmoid()

    def construct(self, x):
        out = self.discriminator(x)
        out = out.reshape(out.shape[0], -1)
        return self.adv_layer(out)

discriminator = Discriminator()

3. 模型训练

3.1 数据准备与处理

将数据集下载到指定目录下并解压,定义create_dataset_imagenet函数对数据进行处理和增强操作。

from download import download
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.vision as vision

url = "https://download.mindspore.cn/dataset/Faces/faces.zip"
path = download(url, "./faces", kind="zip", replace=True)

batch_size = 128          # 批量大小
image_size = 64           # 训练图像空间大小
nc = 3                    # 图像彩色通道数
nz = 100                  # 隐向量的长度
ngf = 64                  # 特征图在生成器中的大小
ndf = 64                  # 特征图在判别器中的大小
num_epochs = 3           # 训练周期数
lr = 0.0002               # 学习率
beta1 = 0.5               # Adam优化器的beta1超参数

def create_dataset_imagenet(dataset_path):
    """数据加载"""
    dataset = ds.ImageFolderDataset(dataset_path,
                                    num_parallel_workers=4,
                                    shuffle=True,
                                    decode=True)

    # 数据增强操作
    transforms = [
        vision.Resize(image_size),
        vision.CenterCrop(image_size),
        vision.HWC2CHW(),
        lambda x: ((x / 255).astype("float32"))
    ]

    # 数据映射操作
    dataset = dataset.project('image')
    dataset = dataset.map(transforms, 'image')

    # 批量操作
    dataset = dataset.batch(batch_size)
    return dataset

dataset = create_dataset_imagenet('./faces')

3.2 损失函数

当定义了DG后,接下来将使用MindSpore中定义的二进制交叉熵损失函数BCELoss

# 定义损失函数
adversarial_loss = nn.BCELoss(reduction='mean')

3.3 优化器

这里设置了两个单独的优化器,一个用于D,另一个用于G。这两个都是lr = 0.0002beta1 = 0.5的Adam优化器。

# 为生成器和判别器设置优化器
optimizer_D = nn.Adam(discriminator.trainable_params(), learning_rate=lr, beta1=beta1)
optimizer_G = nn.Adam(generator.trainable_params(), learning_rate=lr, beta1=beta1)
optimizer_G.update_parameters_name('optim_g.')
optimizer_D.update_parameters_name('optim_d.')

3.4 训练模型

训练分为两个主要部分:训练判别器和训练生成器。

  • 训练判别器

    训练判别器的目的是最大程度地提高判别图像真伪的概率。按照Goodfellow的方法,是希望通过提高其随机梯度来更新判别器,所以我们要最大化𝑙𝑜𝑔𝐷(𝑥)+𝑙𝑜𝑔(1−𝐷(𝐺(𝑧))𝑙𝑜𝑔𝐷(𝑥)+𝑙𝑜𝑔(1−𝐷(𝐺(𝑧))的值。

  • 训练生成器

    如DCGAN论文所述,我们希望通过最小化𝑙𝑜𝑔(1−𝐷(𝐺(𝑧)))𝑙𝑜𝑔(1−𝐷(𝐺(𝑧)))来训练生成器,以产生更好的虚假图像。

在这两个部分中,分别获取训练过程中的损失,并在每个周期结束时进行统计,将fixed_noise批量推送到生成器中,以直观地跟踪G的训练进度。

import mindspore


def generator_forward(real_imgs, valid):
    # 将噪声采样为发生器的输入
    z = ops.standard_normal((real_imgs.shape[0], nz, 1, 1))

    # 生成一批图像
    gen_imgs = generator(z)

    # 损失衡量发生器绕过判别器的能力
    g_loss = adversarial_loss(discriminator(gen_imgs), valid)

    return g_loss, gen_imgs

def discriminator_forward(real_imgs, gen_imgs, valid, fake):
    # 衡量鉴别器从生成的样本中对真实样本进行分类的能力
    real_loss = adversarial_loss(discriminator(real_imgs), valid)
    fake_loss = adversarial_loss(discriminator(gen_imgs), fake)
    d_loss = (real_loss + fake_loss) / 2
    return d_loss

grad_generator_fn = ms.value_and_grad(generator_forward, None,
                                      optimizer_G.parameters,
                                      has_aux=True)
grad_discriminator_fn = ms.value_and_grad(discriminator_forward, None,
                                          optimizer_D.parameters)

@ms.jit
def train_step(imgs):
    valid = ops.ones((imgs.shape[0], 1), mindspore.float32)
    fake = ops.zeros((imgs.shape[0], 1), mindspore.float32)

    (g_loss, gen_imgs), g_grads = grad_generator_fn(imgs, valid)
    optimizer_G(g_grads)
    d_loss, d_grads = grad_discriminator_fn(imgs, gen_imgs, valid, fake)
    optimizer_D(d_grads)

    return g_loss, d_loss, gen_imgs

G_losses = []
D_losses = []
image_list = []

num_epochs = 55  # 设置较大的训练迭代次数,保证模型有较好的生成性能
total = dataset.get_dataset_size()
for epoch in range(num_epochs):
    generator.set_train()
    discriminator.set_train()
    # 为每轮训练读入数据
    for i, (imgs, ) in enumerate(dataset.create_tuple_iterator()):
        g_loss, d_loss, gen_imgs = train_step(imgs)
        if i % 100 == 0 or i == total - 1:
            # 输出训练记录
            print('[%2d/%d][%3d/%d]   Loss_D:%7.4f  Loss_G:%7.4f' % (
                epoch + 1, num_epochs, i + 1, total, d_loss.asnumpy(), g_loss.asnumpy()))
        D_losses.append(d_loss.asnumpy())
        G_losses.append(g_loss.asnumpy())

    # 每个epoch结束后,使用生成器生成一组图片
    generator.set_train(False)
    fixed_noise = ops.standard_normal((batch_size, nz, 1, 1))
    img = generator(fixed_noise)
    image_list.append(img.transpose(0, 2, 3, 1).asnumpy())

    # 保存网络模型参数为ckpt文件
    mindspore.save_checkpoint(generator, "./generator.ckpt")
    mindspore.save_checkpoint(discriminator, "./discriminator.ckpt")

训练过程中通过隐向量fixed_noise生成的图像,可以可视化模型生成拟合过程。

import matplotlib.pyplot as plt
import matplotlib.animation as animation

def showGif(image_list):
    show_list = []
    fig = plt.figure(figsize=(8, 3), dpi=120)
    for epoch in range(len(image_list)):
        images = []
        for i in range(3):
            row = np.concatenate((image_list[epoch][i * 8:(i + 1) * 8]), axis=1)
            images.append(row)
        img = np.clip(np.concatenate((images[:]), axis=0), 0, 1)
        plt.axis("off")
        show_list.append([plt.imshow(img)])

    ani = animation.ArtistAnimation(fig, show_list, interval=1000, repeat_delay=1000, blit=True)
    ani.save('./dcgan.gif', writer='pillow', fps=1)

showGif(image_list)

4. 模型推理

        随着训练次数的增多,图像质量也越来越好。如果增大训练周期数,当num_epochs达到50以上时,生成的动漫头像图片与数据集中的较为相似。

        训练结束后,可以通过加载生成器网络模型参数文件来生成图像。

# 从文件中获取模型参数并加载到网络中
mindspore.load_checkpoint("./generator.ckpt", generator)

fixed_noise = ops.standard_normal((batch_size, nz, 1, 1))
img64 = generator(fixed_noise).transpose(0, 2, 3, 1).asnumpy()

fig = plt.figure(figsize=(8, 3), dpi=120)
images = []
for i in range(3):
    images.append(np.concatenate((img64[i * 8:(i + 1) * 8]), axis=1))
img = np.clip(np.concatenate((images[:]), axis=0), 0, 1)
plt.axis("off")
plt.imshow(img)
plt.show()

5.总结

        DCGAN(Deep Convolutional Generative Adversarial Networks,深度卷积生成对抗网络)是一种在生成对抗网络(GAN)框架下,利用深度卷积神经网络进行图像生成的模型。DCGAN通过引入卷积层来改进GAN的结构,使得生成器和判别器都使用卷积神经网络,从而能够更好地捕捉图像的空间层次特征,生成更高质量的图像。

        具体到模型的主要设计细节上,DCGAN中的生成器使用转置卷积(transposed convolution)来从随机噪声生成图像,而判别器使用标准卷积来判别图像的真伪;在生成器和判别器中广泛使用批量归一化,这样有助于稳定训练过程并促进模型学习;生成器在输出层使用Tanh激活函数,而其他层使用ReLU激活函数,判别器则使用Leaky ReLU激活函数。

        DCGAN能够生成较为清晰和真实的图像,尤其是在处理细节丰富的漫画头像时。通过结构上的改进,DCGAN相对于早期的GAN模型在训练稳定性上有所提升。不过尽管有所改进,DCGAN仍然可能遇到模式崩溃的问题,即生成器产生多样性不足的图像。

  • 30
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 以下是一个简单的微信小程序制作学习计划打卡记录页面的代码。 在 wxml 文件中,我们可以设置页面的布局和样式,以及与用户进行交互的组件,例如按钮、输入框等。 ```html <view class="container"> <view class="header"> <text class="title">学习计划打卡记录</text> </view> <view class="card"> <view class="card-heading"> <text class="card-title">Day 1</text> <text class="card-date">2021-01-01</text> </view> <view class="card-body"> <text class="card-label">学习时间:</text> <input class="card-input" type="number" placeholder="请输入学习时间(单位:小时)" /> </view> <view class="card-footer"> <button class="card-button">提交</button> </view> </view> <!-- Day 2、Day 3 等的卡片同上 --> </view> ``` 在 wxss 文件中,我们可以设置页面的样式,例如字体、颜色、边距等。 ```css .container { padding: 20rpx; } .header { text-align: center; margin-bottom: 20rpx; } .title { font-size: 36rpx; font-weight: bold; color: #333333; } .card { background-color: #ffffff; border-radius: 10rpx; box-shadow: 0 2rpx 6rpx rgba(0, 0, 0, 0.1); margin-bottom: 20rpx; } .card-heading { display: flex; justify-content: space-between; align-items: center; padding: 20rpx; border-bottom: 1rpx solid #f2f2f2; } .card-title { font-size: 28rpx; font-weight: bold; color: #333333; } .card-date { font-size: 24rpx; color: #999999; } .card-body { display: flex; align-items: center; padding: 20rpx; } .card-label { font-size: 28rpx; color: #333333; } .card-input { flex: 1; margin-left: 20rpx; font-size: 28rpx; color: #999999; border: none; } .card-footer { text-align: center; padding: 20rpx; } .card-button { font-size: 28rpx; color: #ffffff; background-color: #007aff; border-radius: 5rpx; padding: 10rpx 20rpx; } ``` 在 js 文件中,我们可以编写页面的逻辑代码。 ```javascript Page({ data: { days: [ { title: 'Day 1', date: '2021-01-01', time: null }, { title: 'Day 2', date: '2021-01-02', time: null }, { title: 'Day 3', date: '2021-01-03', time: null } // Day 4、Day 5 等的数据同上 ] }, handleInput: function(event) { // 获取输入框的值 let index = event.currentTarget.dataset.index; let value = event.detail.value; // 更新数据 let days = this.data.days; days[index].time = value; this.setData({ days: days }); }, handleSubmit: function(event) { // 获取提交按钮的索引 let index = event.currentTarget.dataset.index; // 获取对应的数据 let days = this.data.days; let day = days[index]; // 判断是否填写了学习时间 if (day.time === null || day.time === '') { wx.showToast({ title: '请填写学习时间', icon: 'none' }); return; } // 提交数据 wx.cloud.callFunction({ name: 'submit', data: { date: day.date, time: day.time }, success: res => { wx.showToast({ title: '提交成功' }); }, fail: err => { wx.showToast({ title: '提交失败', icon: 'none' }); } }); } }) ``` 以上代码是一个简单的微信小程序制作学习计划打卡记录页面的示例,仅供参考。具体实现方式可能因个人需求而异。 ### 回答2: 微信小程序制作学习计划打卡记录页面包含前几学习时间的全部代码如下: 首先,在小程序中创建一个page,命名为"studyRecord",在studyRecord.json文件中进行配置,设置"navigationBarTitleText"为"学习打卡",并设置"usingComponents"引入相关组件: ``` { "navigationBarTitleText": "学习打卡", "usingComponents": {} } ``` 接下来,在studyRecord.wxml文件中编写页面结构,包括一个日期选择器和一个列表用于展示打卡记录: ``` <view class="container"> <view class="header"> <picker mode="date" bindchange="dateChange"> <view class="date-picker">{{ currentDate }}</view> </picker> </view> <view class="record-list"> <block wx:for="{{ studyRecords }}" wx:key="index"> <view class="record-item"> <view class="item-date">{{ item.date }}</view> <view class="item-duration">{{ item.duration }}</view> </view> </block> </view> </view> ``` 我们在studyRecord.js文件中定义相关的事件处理函数和数据: ``` Page({ data: { currentDate: '', // 当前选择的日期 studyRecords: [] // 学习打卡记录 }, onLoad: function () { // 获取最近几学习打卡记录 this.getStudyRecords(); }, dateChange: function (event) { this.setData({ currentDate: event.detail.value }); // 根据选择日期的变化更新学习打卡记录 this.getStudyRecords(); }, getStudyRecords: function () { // 根据当前日期获取学习打卡记录,假设获取到的数据格式为[{ date: '2022/01/01', duration: '2小时' }, ...] // 可以通过调用接口或其他方式获取数据 const currentDate = this.data.currentDate; const studyRecords = this.getStudyRecordsByDate(currentDate); this.setData({ studyRecords: studyRecords }); }, getStudyRecordsByDate: function (date) { // 根据日期获取学习打卡记录的逻辑实现 // ... return studyRecords; // 返回按日期查询到的学习打卡记录 } }) ``` 在studyRecord.wxss文件中定义样式: ``` .container { padding: 10px; } .header { margin-bottom: 10px; } .date-picker { font-size: 18px; color: #333; padding: 10px; background-color: #f5f5f5; border-radius: 4px; text-align: center; } .record-list { background-color: #fff; border-radius: 4px; } .record-item { padding: 10px; border-bottom: solid 1px #eee; } .item-date { font-size: 14px; color: #666; } .item-duration { font-size: 16px; color: #333; } ``` 这样,一个包含前几学习时间的微信小程序制作学习计划打卡记录页面的代码就完成了。 ### 回答3: 要制作微信小程序的学习计划打卡记录页面,可以按照以下步骤进行: 1. 首先,需要在微信开发者工具中创建一个新的小程序项目,并在app.json文件中配置页面路由信息。 2. 在项目的根目录下创建一个新的文件夹,用于存放页面相关的文件,比如study-record文件夹。 3. 在study-record文件夹中创建一个study-record.wxml文件用于编写页面的结构。 4. 在study-record文件夹中创建一个study-record.wxss文件用于编写页面的样式。 5. 在study-record文件夹中创建一个study-record.js文件用于编写页面的逻辑代码。 6. 在study-record.js中定义一个数据对象,用于存储前几学习时间。可以使用数组来存储每一学习时间,比如每个元素都是一个包含日期和学习时间的对象。 7. 在study-record.js中编写一个函数来获取前几学习时间。可以使用Date对象和相关的方法来计算前几的日期,然后根据日期从数据对象中获取对应的学习时间。 8. 在study-record.js中编写一个函数来更新学习时间。可以通过用户输入的方式来更新某一学习时间,并将更新后的数据保存到数据对象中。 9. 在study-record.wxml中使用wx:for循环来遍历数据对象中的学习时间,并将日期和学习时间显示在页面上。 10. 在study-record.wxml中添加一个按钮,用于触发更新学习时间的函数。 11. 在study-record.js中监听按钮的点击事件,并在点击时触发更新学习时间的函数。 12. 在study-record.wxss中设置页面的样式,比如学习时间的字体大小、颜色等。 通过以上步骤,就可以完成微信小程序的学习计划打卡记录页面的制作。在页面中包含了前几学习时间,并提供了更新学习时间的功能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值