a
+
b
+
c
⏟
1.0
⏞
2.0
\overbrace{a+\underbrace{b+c}_{1.0}}^{2.0}
a+1.0b+c2.0
\overbrace{a+\underbrace{b+c}_{1.0}}^{2.0}
3. 上下标
符号
公式
符号
公式
a
sin
2
θ
a^{\sin^2\theta}
asin2θ
a^{\sin^2\theta}
a
cos
θ
1
a_{\cos\theta_1}
acosθ1
a_{\cos\theta_1}
a
b
→
a
b
a_b \to a_{_b}
ab→ab
a_b \to a_{_b}
a
b
→
a
b
a^b \to a^{^b}
ab→ab
a^b \to a^{^b}
1
6
12
C
^{12}_{\phantom{1}6}\textrm{C}
1612C
^{12}_{\phantom{1}6}\textrm{C}
C
6
12
C_6^{12}
C612
C_6^{12}
三、括号
符号
公式
(
小括号
)
\small(小括号)
(小括号)
(小括号)
(
X
L
括号
)
\small\big(XL括号\big)
(XL括号)
\big(XL括号\big)
(
X
X
L
括号
)
\small\Big(XXL括号\Big)
(XXL括号)
\Big(XXL括号\Big)
(
X
X
X
L
括号
)
\small\bigg(XXXL括号\bigg)
(XXXL括号)
\bigg(XXXL括号\bigg)
(
X
X
X
X
L
括号
)
\small\Bigg(XXXXL括号\Bigg)
(XXXXL括号)
\Bigg(XXXXL括号\Bigg)
⟮
括号
⟯
\small\lgroup括号\rgroup
⟮括号⟯
\lgroup括号\rgroup
[
中括号
]
\small[中括号]
[中括号]
[中括号] or \lbrack 中括号 \rbrack
{
大括号
}
\small\lbrace大括号\rbrace
{大括号}
\{大括号\} or \lbrace大括号\rbrace
⟨
程序设计
⟩
\small\lang程序设计\rang
⟨程序设计⟩
\lang程序设计\rang or \langle程序设计\rangle
∣
绝对值
∣
\small\lvert绝对值\rvert
∣绝对值∣
\lvert绝对值\rvert
∥
范数
∥
\small\lVert范数\rVert
∥范数∥
\lVert范数\rVert
四、数学符号
1. 基本数学符号
1)运算符
说明
符号
公式
说明
符号
公式
乘号
×
\times
×
\times
除号
÷
\div
÷
\div
加减号
±
\pm
±
\pm
减加号
∓
\mp
∓
\mp
星号
∗
\ast
∗
\ast
星形
⋆
\star
⋆
\star
竖线
∣
\vert
∣
\vert
双竖线
∥
\Vert
∥
\Vert
不等号
≠
\neq
=
\neq or \ne
约等号
≈
\approx
≈
\approx
大于等于号
≥
\geq
≥
\geq or \ge
小于等于号
≤
\leq
≤
\leq or \le
远大于号
≫
\gg
≫
\gg
远小于号
≪
\ll
≪
\ll
同或
⊙
\odot
⊙
\odot
异或
⊕
\oplus
⊕
\oplus
克罗内克积
⊗
\otimes
⊗
\otimes
偏导
∂
\partial
∂
\partial
向下取整
⌊
x
⌋
\lfloor x\rfloor
⌊x⌋
\lfloor x\rfloor
向上取整
⌈
x
⌉
\lceil x\rceil
⌈x⌉
\lceil x\rceil
2)常见函数
符号
公式
符号
公式
ln
(
a
+
b
)
\ln{(a+b)}
ln(a+b)
\ln{(a+b)}
lg
(
a
+
b
)
\lg{(a+b)}
lg(a+b)
\lg{(a+b)}
log
a
b
\log_a^b
logab
\log_a^b
ln
a
+
1
b
\ln_{a+1}^b
lna+1b
\ln_{a+1}^b
max
f
(
x
)
\max f(x)
maxf(x)
\max f(x)
min
f
(
x
)
\min f(x)
minf(x)
\min f(x)
arg
max
ω
\arg\max_\omega
argωmax
\arg\max_\omega
arg
min
ω
\arg\min_\omega
argωmin
\arg\min_\omega
3)分式、根号、累加/乘
说明
符号
公式
分式
a
b
\small\frac{a}{b}
ba
\frac{a}{b}
根号
a
+
b
\small\sqrt{a+b}
a+b
\sqrt{a+b}
n 次根号
a
+
b
n
\small\sqrt[n]{a+b}
na+b
\sqrt[n]{a+b}
累加
∑
i
=
0
n
i
\small\sum_{i=0}^n i
i=0∑ni
\sum_{i=0}^n i
累加(压缩)
∑
i
=
0
n
i
\small\sum\nolimits_{i=0}^n i
∑i=0ni
\sum\nolimits_{i=0}^n i
累乘
∏
i
=
0
n
i
\small\prod_{i=0}^n i
i=0∏ni
\prod_{i=0}^n i
累乘(压缩)
∏
i
=
0
n
i
\small\prod\nolimits_{i=0}^n i
∏i=0ni
\prod\nolimits_{i=0}^n i
注:
说明
符号
公式
分数(字体会逐级变小)
1
+
a
b
c
+
1
\small 1 + \frac{a}{\frac{b}{c}+1}
1+cb+1a
1 + \frac{a}{\frac{b}{c}+1}
分数(字号为行间公式的大小)
1
+
a
b
c
+
1
\small 1 + \frac{a}{\tfrac{b}{c}+1}
1+cb+1a
1 + \frac{a}{\tfrac{b}{c}+1}
分数(字体不会变小)
1
+
a
b
c
+
1
\small 1 + \cfrac{a}{\cfrac{b}{c}+1}
1+cb+1a
1 + \cfrac{a}{\cfrac{b}{c}+1}
分数(字号为独立公式的大小)
1
+
a
b
c
+
1
\small 1 + \frac{a}{\dfrac{b}{c}+1}
1+cb+1a
1 + \frac{a}{\dfrac{b}{c}+1}
4)极限
说明
符号
公式
箭头
→
\rightarrow
→
\rightarrow
无穷
∞
\infty
∞
\infty
极限
lim
n
→
+
∞
n
\lim_{n\rightarrow+\infty} n
n→+∞limn
\lim_{n\rightarrow+\infty} n
极限(压缩)
lim
n
→
+
∞
n
\lim\nolimits_{n\rightarrow+\infty} n
limn→+∞n
\lim\nolimits_{n\rightarrow+\infty} n
5)积分
说明
符号
公式
说明
符号
公式
积分
∫
\small\int
∫
\int
双重积分
∬
\small\iint
∬
\iint
三重积分
∭
\small\iiint
∭
\iiint
曲线积分
∮
\small\oint
∮
\oint
双重曲线积分
∯
\small\oiint
∬
\oiint
三重曲线积分
∰
\small\oiiint
∭
\oiiint
梯度
∇
\nabla
∇
\nabla
积分示例
∫
0
1
x
d
x
\int_0^1 x dx
∫01xdx
\int_0^1 x dx
2. 三角函数与几何符号
1)三角函数
说明
符号
公式
说明
符号
公式
正弦
sin
θ
\sin\theta
sinθ
\sin\theta
余弦
cos
θ
\cos\theta
cosθ
\cos\theta
正切
tan
θ
\tan\theta
tanθ
\tan\theta
余切
cot
θ
\cot\theta
cotθ
\cot\theta
正割
sec
θ
\sec\theta
secθ
\sec\theta
余割
csc
θ
\csc\theta
cscθ
\csc\theta
2)几何符号
说明
符号
公式
说明
符号
公式
垂直
⊥
\bot
⊥
\bot
角度
∠
\angle
∠
\angle
度
4
5
∘
45^\circ
45∘
45^\circ
全等于
≡
\equiv
≡
\equiv
等同于
≅
\cong
≅
\cong
相似
∼
\sim
∼
\sim
三角形:
符号
公式
符号
公式
△
\small\triangle
△
\triangle or \bigtriangleup
▽
\triangledown
▽
\triangledown or \bigtriangledown
3. 代数符号
符号
公式
符号
公式
符号
公式
符号
公式
∝
\small\propto
∝
\propto
⊨
\small\models
⊨
\models
≺
\small\prec
≺
\prec
≻
\small\succ
≻
\succ
⪯
\small\preceq
⪯
\preceq
⪰
\small\succeq
⪰
\succeq
≃
\small\simeq
≃
\simeq
≍
\small\asymp
≍
\asymp
∥
\small\parallel
∥
\parallel
≐
\small\doteq
≐
\doteq
⌣
\small\smile
⌣
\smile
⌢
\small\frown
⌢
\frown
⊢
\small\vdash
⊢
\vdash
⊣
\small\dashv
⊣
\dashv
⊤
\small\top
⊤
\top
⊥
\small\perp
⊥
\bot or \perp
4. 否定符号
符号
命令
符号
命令
符号
命令
≮
\nless
≮
\nless
≯
\ngtr
≯
\ngtr
⫋
\varsubsetneqq
\varsubsetneqq
⪇
\lneq
⪇
\lneq
⪈
\gneq
⪈
\gneq
⫌
\varsupsetneqq
\varsupsetneqq
≰
\nleq
≰
\nleq
≱
\ngeq
≱
\ngeq
⊈
\nsubseteqq
\nsubseteqq
≰
\nleqslant
\nleqslant
≱
\ngeqslant
\ngeqslant
⊉
\nsupseteqq
\nsupseteqq
≨
\lneqq
≨
\lneqq
≩
\gneqq
≩
\gneqq
∤
\nmid
∤
\nmid
≨
\lvertneqq
\lvertneqq
≩
\gvertneqq
\gvertneqq
∦
\nparallel
∦
\nparallel
≰
\nleqq
\nleqq
≱
\ngeqq
\ngeqq
∤
\nshortmid
\nshortmid
⋦
\lnsim
⋦
\lnsim
⋧
\gnsim
⋧
\gnsim
∦
\nshortparallel
\nshortparallel
⪉
\lnapprox
⪉
\lnapprox
⪊
\gnapprox
⪊
\gnapprox
≁
\nsim
≁
\nsim
⊀
\nprec
⊀
\nprec
⊁
\nsucc
⊁
\nsucc
≆
\ncong
≆
\ncong
⋠
\npreceq
⋠
\npreceq
⋡
\nsucceq
⋡
\nsucceq
⊬
\nvdash
⊬
\nvdash
⪵
\precneqq
⪵
\precneqq
⪶
\succneqq
⪶
\succneqq
⊭
\nvDash
⊭
\nvDash
⋨
\precnsim
⋨
\precnsim
⋩
\succnsim
⋩
\succnsim
⊮
\nVdash
⊮
\nVdash
⪹
\precnapprox
⪹
\precnapprox
⪺
\succnapprox
⪺
\succnapprox
⊯
\nVDash
⊯
\nVDash
⊊
\subsetneq
⊊
\subsetneq
⊋
\supsetneq
⊋
\supsetneq
⋪
\ntriangleleft
⋪
\ntriangleleft
⊊
\varsubsetneq
\varsubsetneq
⊋
\varsupsetneq
\varsupsetneq
⋫
\ntriangleright
⋫
\ntriangleright
⊈
\nsubseteq
⊈
\nsubseteq
⊉
\nsupseteq
⊉
\nsupseteq
⋬
\ntrianglelefteq
⋬
\ntrianglelefteq
⫋
\subsetneqq
⫋
\subsetneqq
⫌
\supsetneqq
⫌
\supsetneqq
⋭
\ntrianglerighteq
⋭
\ntrianglerighteq
↚
\nleftarrow
↚
\nleftarrow
↛
\nrightarrow
↛
\nrightarrow
↮
\nleftrightarrow
↮
\nleftrightarrow
⇍
\nLeftarrow
⇍
\nLeftarrow
⇏
\nRightarrow
⇏
\nRightarrow
⇎
\nLeftrightarrow
⇎
\nLeftrightarrow
5. 理论符号
说明
符号
公式
说明
符号
公式
自然连接
⋈
\bowtie
⋈
\bowtie or \Join
空集
∅
\emptyset
∅
\emptyset
属于
∈
\in
∈
\in
属于
∋
\ni
∋
\ni or \owns
不属于
∉
\notin
∈/
\notin
不属于
∌
\notni
∋
\notni
严格子集
⊂
\subset
⊂
\subset
严格超集
⊃
\supset
⊃
\supset
子集
⊆
\subseteq
⊆
\subseteq
超集
⊇
\supseteq
⊇
\supseteq
非子集
⊄
\not\subset
⊂
\not\subset
非超集
⊅
\not\supset
⊃
\not\supset
交集
∩
\cap
∩
\cap
并集
∪
\cup
∪
\cup
与
∧
\wedge
∧
\wedge or \land
或
∨
\vee
∨
\vee or \lor
非
¬
\neg
¬
\neg
集合减法
∖
\setminus
∖
\setminus or \backslash
多重集
⊎
\uplus
⊎
\uplus
因为
∵
\because
∵
\because
所以
∴
\therefore
∴
\therefore
任意
∀
\forall
∀
\forall
存在
∃
\exist
∃
\exist
不存在
∄
\not\exist
∃
\not\exist
其他
符号
公式
符号
公式
符号
公式
⊏
\sqsubset
⊏
\sqsubset
⊐
\sqsupset
⊐
\sqsupset
⊓
\sqcap
⊓
\sqcap
⊑
\sqsubseteq
⊑
\sqsubseteq
⊒
\sqsupseteq
⊒
\sqsupseteq
⊔
\sqcup
⊔
\sqcup
⋂
\small\bigcap
⋂
\bigcap
⋃
\small\bigcup
⋃
\bigcup
⨄
\small\biguplus
⨄
\biguplus
⋁
\small\bigvee
⋁
\bigvee
⋀
\small\bigwedge
⋀
\bigwedge
6. 分支函数
例如:符号函数
f
(
x
)
=
s
g
n
[
x
]
=
{
1
,
x
>
0
0
,
x
=
0
−
1
,
x
<
0
(式1)
f(x) = sgn[x]= \begin{cases} 1,\quad x>0\\ 0, \quad x=0\\ -1, \quad x<0 \end{cases} \tag{式1}
f(x)=sgn[x]=⎩⎨⎧1,x>00,x=0−1,x<0(式1)
A
=
(
1
)
A=\begin{smallmatrix}(1)\end{smallmatrix}
A=(1)
A=\begin{smallmatrix}(1)\end{smallmatrix}
bmatrix
A
=
[
1
]
A=\begin{bmatrix}1\end{bmatrix}
A=[1]
A=\begin{bmatrix}1\end{bmatrix}
Bmatrix
A
=
{
1
}
A=\begin{Bmatrix}1\end{Bmatrix}
A={1}
A=\begin{Bmatrix}1\end{Bmatrix}
vmatrix
A
=
∣
1
∣
A=\begin{vmatrix}1\end{vmatrix}
A=1
A=\begin{vmatrix}1\end{vmatrix}
Vmatrix
A
=
∥
1
∥
A=\begin{Vmatrix}1\end{Vmatrix}
A=1
A=\begin{Vmatrix}1\end{Vmatrix}
无括号:
A
=
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
(式1)
A = \begin{matrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix} \tag{式1}
A=a11a21a31a12a22a32a13a23a33(式1)
A
=
(
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
)
(式2)
A = \left( \begin{matrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix} \right) \tag{式2}
A=a11a21a31a12a22a32a13a23a33(式2)
A
=
[
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
]
(式3)
A = \left[ \begin{matrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix} \right] \tag{式3}
A=a11a21a31a12a22a32a13a23a33(式3)
A
=
{
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
}
(式4)
A = \left\{ \begin{matrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{matrix} \right\} \tag{式4}
A=⎩⎨⎧a11a21a31a12a22a32a13a23a33⎭⎬⎫(式4)
A
=
[
a
b
⋯
a
b
b
⋯
b
⋮
⋮
⋱
⋮
c
c
⋯
c
]
(式5)
A = \left[ \begin{matrix} a & b & \cdots & a\\ b & b & \cdots & b\\ \vdots & \vdots & \ddots & \vdots\\ c & c & \cdots & c \end{matrix} \right] \tag{式5}
A=ab⋮cbb⋮c⋯⋯⋱⋯ab⋮c(式5)
$$A =
\left[
\begin{matrix}
a & b & \cdots & a\\
b & b & \cdots & b\\
\vdots & \vdots & \ddots & \vdots\\
c & c & \cdots & c
\end{matrix}
\right]
\tag{式5}
$$