第一章 离散时间信号和系统基础

第一章 离散时间信号和系统基础

离散时间信号——序列

表示和分类

离散时间信号在数学上表示成数的序列。序列 x x x​记作 x = x [ n ] , − ∞ < x < ∞ x={x[n]}, -\infty<x<\infty x=x[n],<x<​。 x [ n ] x[n] x[n]​表示序列的第n个样本,但为了方便,常用来表示整个序列。

序列的能量定义为 E = ∑ n = − ∞ ∞ ∣ x [ n ] ∣ 2 = ∑ n = − ∞ ∞ x [ n ] ∗ x ∗ [ n ] E=\sum_{n=-\infty}^{\infty}|x[n]|^2=\sum_{n=-\infty}^{\infty}x[n]*x^*[n] E=n=x[n]2=n=x[n]x[n]

基本运算
运算表示
移位 y [ n ] = x [ n − n 0 ] y[n]=x[n-n_0] y[n]=x[nn0]
反转 y [ n ] = x [ − n ] y[n]=x[-n] y[n]=x[n]
标加 y [ n ] = a + x [ n ] y[n]=a+x[n] y[n]=a+x[n]
矢加 y [ n ] = x [ n ] + h [ n ] y[n]=x[n]+h[n] y[n]=x[n]+h[n]
标乘 y [ n ] = a ∗ x [ n ] y[n]=a*x[n] y[n]=ax[n]
矢乘 y [ n ] = x [ n ] h [ n ] y[n]=x[n]h[n] y[n]=x[n]h[n]
卷积 y [ n ] = x [ n ] ∗ h [ n ] = ∑ k = − ∞ ∞ x [ k ] h [ n − k ] y[n]=x[n]*h[n]=\sum_{k=-\infty}^{\infty}x[k]h[n-k] y[n]=x[n]h[n]=k=x[k]h[nk]
互相关 r x h [ n ] = ∑ k = − ∞ ∞ x ∗ [ k ] h [ k + n ] = x ∗ [ − n ] ∗ h [ n ] r_{x h}[n]=\sum_{k=-\infty}^{\infty} x^{*}[k] h[k+n]=x^{*}[-n] * h[n] rxh[n]=k=x[k]h[k+n]=x[n]h[n]
自相关 x x x [ n ] = ∑ k = − ∞ ∞ x ∗ [ k ] x [ k + n ] ] \left.x_{x x}[n]=\sum_{k=-\infty}^{\infty} x^{*}[k] x[k+n]\right] xxx[n]=k=x[k]x[k+n]]

卷积的性质:

(1) 满足交换律

即, x [ n ] ∗ h [ n ] = h [ n ] ∗ x [ n ] ∑ k = − ∞ ∞ x [ k ] h [ n − k ] = ∑ k = − ∞ ∞ x [ n − k ] h [ k ] \begin{aligned} x[n] * h[n] &=h[n] * x[n] \\ \sum_{k=-\infty}^{\infty} x[k] h[n-k] &=\sum_{k=-\infty}^{\infty} x[n-k] h[k] \end{aligned} x[n]h[n]k=x[k]h[nk]=h[n]x[n]=k=x[nk]h[k]

(2) 满足分配律

x [ n ] ∗ ( h 1 [ n ] + h 2 [ n ] ) = x [ n ] ∗ h 1 [ n ] + x [ n ] ∗ h 2 [ n ] x[n] *\left(h_{1}[n]+h_{2}[n]\right)=x[n] * h_{1}[n]+x[n] * h_{2}[n] x[n](h1[n]+h2[n])=x[n]h1[n]+x[n]h2[n]

(3) 满足结合律

( x [ n ] ∗ h 1 [ n ] ) ∗ h 2 [ n ] = x [ n ] ∗ ( h 1 [ n ] ∗ h 2 [ n ] ) \left(x[n] * h_{1}[n]\right) * h_{2}[n]=x[n] *\left(h_{1}[n] * h_{2}[n]\right) (x[n]h1[n])h2[n]=x[n](h1[n]h2[n])

(4) 如果 x[n] 的非零区间是 N 0 ⩽ n ⩽ N 1 N_{0} \leqslant n \leqslant N_{1} N0nN1 , 长度为 L 0 L_{0} L0, h [ n ] h[n] h[n] 的非零区间是 N 2 ⩽ n ⩽ N 3 N_{2} \leqslant n \leqslant N_{3} N2nN3 , 长度 为 L 1 L_{1} L1, 则 x [ n ] ∗ h [ n ] x[n] * h[n] x[n]h[n] 的非零区间是 N 0 + N 2 ⩽ n ⩽ N 1 + N 3 N_{0}+N_{2} \leqslant n \leqslant N_{1}+N_{3} N0+N2nN1+N3 , 长度为 L 0 + L 1 − 1 ∘ L_{0}+L_{1}-1_{\circ} L0+L11

对称性
类别表示类别表示
奇序列 x [ n ] = x [ − n ] x[n]=x[-n] x[n]=x[n]共轭对称序列 x [ n ] = x ∗ [ − n ] x[n]=x^*[-n] x[n]=x[n]
偶序列 x [ n ] = − x [ − n ] x[n]=-x[-n] x[n]=x[n]序列共轭反对称 x [ n ] = − x ∗ [ − n ] x[n]=-x^*[-n] x[n]=x[n]
对称分量 x e [ n ] = x [ n ] + x [ − n ] 2 x_e[n]=\frac{x[n]+x[-n]}{2} xe[n]=2x[n]+x[n]共轭对称分量 x e [ n ] = x [ n ] + x ∗ [ − n ] 2 x_e[n]=\frac{x[n]+x^*[-n]}{2} xe[n]=2x[n]+x[n]
反对称分量 x o [ n ] = x [ n ] − x [ − n ] 2 x_o[n]=\frac{x[n]-x[-n]}{2} xo[n]=2x[n]x[n]共轭反对称分量 x o [ n ] = x [ n ] − x ∗ [ − n ] 2 x_o[n]=\frac{x[n]-x^*[-n]}{2} xo[n]=2x[n]x[n]

离散时间系统

无记忆和有记忆系统

无记忆系统:当前输出只由当前输入决定。

线性和非线性系统

满足叠加性质: T { a x 1 [ n ] + b x 2 [ n ] } = a T { x [ n ] } + b T { x 2 [ n ] } T\{ax_1[n]+bx_2[n]\}=aT\{x_[n]\}+bT\{x_2[n]\} T{ax1[n]+bx2[n]}=aT{x[n]}+bT{x2[n]},其中a,b是任意常数,则该系统为线性系统

时不变和时变系统

时不变系统输入序列的任意移位引起输出序列相同方式的移位,即满足: T { x [ n − n 0 ] } = y [ n − n 0 ] T\{x[n-n_0]\}=y[n-n_0] T{x[nn0]}=y[nn0] n 0 n_0 n0为任意整数。

因果和非因果系统
  • 时域:输出变化不会发生在输入变化之前的系统称为因果系统,即当前输出样本只取决于当前即以前的输入样本,和以后的输入样本无关。即满足: f o r   n ≤ n 0 :   i f   x 1 [ n ] = x 2 [ n ] , t h e n   y 1 [ n ] = y 2 [ n ] for \ n\le n_0:\ if \ x_1[n]=x_2[n] ,then\ y_1[n]=y_2[n] for nn0: if x1[n]=x2[n],then y1[n]=y2[n]

  • 单位脉冲响应: h [ n ] h[n] h[n]是因果的有限长右边序列,满足: h [ n ] = 0   f o r   n < 0 h[n]=0\ for\ n<0 h[n]=0 for n<0

  • z变换收敛域: R − < ∣ z ∣ ≤ ∞ ;   0 < ∣ z ∣ ≤ ∞ R_-<|z|\le\infty ;\ 0<|z|\le\infty R<z; 0<z,因果系统在 z z = ∞ zz=\infty zz=无极点

稳定和不稳定系统
  • 时域:对任意有界输入都产生有界输出的系统称为稳定系统,即当 ∣ x [ n ] ∣ < ∞ , ∀ n ;   ∣ t { x [ n ] } ∣ < ∞ , ∀ n |x[n]|<\infty,\forall n;\ |t\{x[n]\}|<\infty,\forall n x[n]<,n; t{x[n]}<,n
  • 单位脉冲响应:单位脉冲响应是一个绝对可和的序列,即满足: ∑ n = − ∞ ∞ ∣ h [ n ] ∣ < ∞ \sum_{n=-\infty}^{\infty}|h[n]|<\infty n=h[n]<
  • z变换收敛域:对于稳定的LTI系统,系统函数的ROC必然包含单位圆 ∣ z ∣ = 1 |z|=1 z=1,所以稳定系统单位圆上无极点
有限脉冲响应和无限脉冲响应应系统
  • 单位脉冲响应:单位脉冲响应有限长的LTI系统为有限脉冲响应系统(FIR),FIR既可以采用没有递归的卷积和实现(即N=0的差分方程),也可以采用有递归的差分方程实现,后者运算量可能更小;单位脉冲响应无限长的LTI系统为无限脉冲响应系统(IIR),IIR系统通过引入递归(即利用以前的输出求当前的输出)得出差分方程,从而将无线项的卷积和运算转换成了有限项的递推实现。
  • z变换收敛域:FIR系统,由于 h [ n ] h[n] h[n]有限长,所以ROC是整个平面( z = 0   o r   ∞ z=0\ or\ \infty z=0 or 可能除外),一定包含单位圆,故系统一定稳定,并且除了 z = 0   o r   ∞ z=0\ or\ \infty z=0 or 可能是极点以外没有其他极点,故FIR可称为全零点系统;IIR系统 h [ n ] h[n] h[n]可以是左边、右边或双边序列,所以ROC可以是一个圆的内部、外部或圆环,不一定包含单位圆,即系统不一定稳定。由于ROC以极点为界,所以IIR一定由原点和无穷远以外的极点。
逆系统

逆系统满足: H ( z ) H i ( z ) = 1 ;   h [ n ] ∗ h i [ n ] = δ [ n ] H(z)H_i(z)=1;\ h[n]*h_i[n]=\delta[n] H(z)Hi(z)=1; h[n]hi[n]=δ[n]

  • 不是所有系统都有逆系统
  • 系统函数是有理函数的系统一定有逆系统
  • 因果稳定系统只有其系统函数的零点和极点都在单位圆时,该系统的逆系统才是因果稳定的
  • 定义零点和极点都在单位圆内的系统为最小相位系统,系统函数用 H m i n ( z ) H_{min}(z) Hmin(z)表示;反之,极点和零点全在单位圆外的系统为最大相位系统,系统函数用 H m a x ( z ) H_{max}(z) Hmax(z)表示。相应的时域序列 h m i n [ n ] h_{min}[n] hmin[n] h m a x [ n ] h_{max[}n] hmax[n]分别称为最小相位序列和最大相位序列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值